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Abstract. Groups are one of the most fundamental algebraic concepts in

mathematics, and they can be studied through their actions on other objects.

Special attention of geometic group theorists has been given to the actions on
trees. This paper explores consequences that can be derived from groups acting

on those spaces. We discuss and present the theory of R-trees, and Bass–Serre

theory, as well as complexes of groups. We discuss applications of R-trees,
ends of groups and apply some of the theory to the class of Baumslag-Solitar

groups.
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1. Introduction

Given a group G, generated by a subset S ⊆ G, we may construct a space on
which the group acts freely and transitively, namely its Cayley graph. In this sense,
all groups are (a subgroup of) a symmetry group of a space. Fixing a group G, we
may have many such spaces X and actions G↷X, which we may use to reason
about the group G. Broadly, geometric group theory involves exploring spaces that
encode information about groups in this way. If we restrict our study to finitely
presented groups, the spaces that often turn out to be useful are those that can be
defined in a discrete, procedural way, such as CW complexes, simplicial complexes,
metric spaces, or graphs.

This paper is mainly concerned with group actions on trees, in particular the
theory developed by Bass and Serre in the 1970’s. The theory gives a way to study
these groups by building a graph of groups that represents certain elements of group
structure. We explore some of these elements in more detail, as well as some ways
in which the theory can be generalised.

1.1. Overview. We begin by exploring Baumslag-Solitar groups and their connec-
tion to Bass-Serre theory. These groups were first introduced in [BS62] to provide
examples of one-relator non-Hopfian groups. Thus, we start the section by consid-
ering the property of being Hopfian, and showing that BS(2, 3) indeed is not.

Other topics that we explore early in the section are the answer to the iso-
morphism problem, residual finiteness and condition for solvability of BS(m,n).
Afterwards we proceed to focus on the fact that Baumslag-Solitar groups can be
viewed as a specific type of extensions of Z, namely HNN extensions (named after
G. Higman, B. Neumann and H. Neumann). That point of view gives us a way to
consider these groups through the lens of Bass-Serre theory, which is developed side
by side with applying it to our specific example. We define both graphs of groups
and G-trees in the sense of Serre [Ser80], and exhibit Baumslag-Solitar groups as
fundamental groups of specific graphs consisting of one loop. Finally, we construct
the Bass-Serre tree for BS(m,n).

After exploring properties of classical Baumslag-Solitar groups we state their
generalisation - the generalised Baumslag-Solitar (GBS) groups. We start by con-
sidering some examples and introduce the concept of an elementary GBS groups.
We follow the work of Forester [For03], Levitt [Lev15] and Whyte [Why01] while we
explore properties of GBS graphs, trees and groups that come with them. One of
the key results we discuss is the classification of GBS graphs due to Whyte, which
also tells us information about quasi-isometies between some of BS(m,n) groups.
Finally, we look at quotients and subgroups that occur for GBS groups.

We finish the section on Baumslag-Solitar groups and their generalisation by
referring the reader to other interesting questions and work on the subject. Thus,
one can treat this part of the paper as a survey of how different properties weave
together for one specific class of groups.

In Section 3, we explore complexes of groups. These should be understood as
higher-dimensional analogues of graphs of groups. With graphs of groups, we assign
groups to the vertices and edges of a graph. We then assign two injective homo-
morphisms from each edge group in to the vertex groups at each of the edge’s ends.
In this way, none of the homomorphisms in a graph of groups are composable, as
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shown in the following diagram.

Gv1 Ge1 Gv0 Ge2 Gv2

Ge3

Gv3

Complexes of groups are higher-dimensional in an algebraic sense, because they
explore systems of groups and injective homomorphisms in which the homomor-
phisms are composable. The structure of a category keeps track of these map com-
positions, and the categories that are useful to complexes of groups are so-called
small complexes without loops, abbreviated as scwols.

We will introduce some constructions from category theory to motivate the def-
inition of scwols. A poset P can be modelled by a category C where the objects
of C are the elements of P , and there is a unique morphism p → q exactly when
p ≤ q. In such a category, we never have a chain p < q < p, which would corre-
spond to a directed loop in the corresponding category. Scwols are similar, in that
they are without loops, but do not have the restriction that two distinct elements
have at most one morphism between them. It is very reasonable to have different
injective homomorphisms from one group to another, but we should not consider
the case where there is a cycle of such homomorphisms, which would necessitate all
the injective homomorphisms to be isomorphisms. In this way, scwols model this
situation well

Being a category, a scwol X can also model a space, namely |X |, the geometric
realisation of its nerve. This space |X | is a simplicial complex, where n–simplices
correspond to tuples of n composable morphisms in X . The face maps are given
by morphism composition in X .

A complex of groups is an assignment of a group to each object in a scwol, and
an injective homomorphism to each morphism in the scwol, with some additional
data that encodes composition. As such, for each composable pair of morphisms

σ τ νb a

in X , there are three injective homomorphisms in the corresponding complex of
groups. Namely, ϕb : Gσ → Gτ , ϕa : Gτ → Gν , and ϕab : Gσ → Gν . We do not
require that composition be exactly ϕaϕb = ϕab, as we would expect in a category,
but allow for the composition to be off by conjugation by some element ga,b ∈ Gν ,
which we keep track of, i.e. Ad(ga,b)ϕab = ϕaϕb.

Complexes of groups may arise from group actions on scwols, and the construc-
tion of the complex of groups associated to the quotient scwol is very similar to the
construction with graphs of groups. Accordingly, the local groups are associated
to stabilisers of the action. We call any graph of groups that arise from such an
action developable.

Complexes of groups also emerge from geometric actions. Suppose we have
some group action G↷Y , where Y is some polyhedral complex. We may model
this polyhedral complex with a scwol X , such that |X | is naturally homeomorphic
to the barycentric subdivision of Y . We then have an action G↷ |X | and G↷X .
From this, we can get a complex of groups over the quotient scwol associated to
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G↷X . So we can use complexes of groups to encode group actions of polyhedral
complexes.

We conclude the section on complexes of groups by giving the construction of the
fundamental group of a complex of groups. When the complex of groups arose from
the action of a group G on a scwol, the fundamental group is a way of recovering the
original group G. Graphs of groups always have an associated action on a tree, but
this is not true with complexes of groups. We see the developability of a complex
of groups depends on whether the natural homomorphisms from the local groups
to the fundamental group are injections.

In Section 4, we delve into the topic of ends of groups. Loosely speaking, ends
of groups describe the connected components of a topological space at infinity. For
a simple example, consider the real line - intuitively, this space has two ‘ends’.
Similarly, the Euclidean plane has one end. A natural place to start this section
is therefore to formalise what defines an end. In this section, we focus specifically
on ends of finitely generated groups, where ends relate to a Cayley graph for the
group up to a choice of finite generating set.

The main focus of this section is Stallings’ Structure Theorem, which classifies
finitely generated groups with more than one end as either (i) virtually cyclic groups
or (ii) groups which are splittings over a finite subgroup. These splittings are defined
as amalgams and HNN extensions — the latter of which is introduced in Section
2. Splittings offer a different perspective on group extensions: instead of adding
structure on top of a base group, amalgams and HNN extensions allow us to divide
or ‘factorise’ these groups. This leads to the notion of Dunwoody’s accessibility,
which we mention in Section 4.1.

After introducing ends, their basic properties and some algebraic background on
splittings of groups, we progress towards a construction for splittings of multiple
ended groups. To do this, we follow Krön’s method in [Krö10] which introduces a
notion of cuts. These are sets of vertices in a graph which contain the vertices of an
infinite, non-backtracking path without loops, as well as some additional conditions.
We define minimal and nested cuts before demonstrating an example of cuts in
PSL(2,Z). Finally, we outline a sketch of the proof of Stallings’ structure theorem
using these techniques and a related construction of structure trees. Dunwoody’s
structure trees arise from considering the finite sets of vertices or edges whose
removal disconnects a locally finite graph. Applications of structure trees leads
to an area known as Structure Tree Theory pioneered by Dicks, Dunwoody and
Krön. We also highlight several areas for further investigation, namely additional
examples of one-ended groups and a generalised notion of ends.

The classification given by Stallings’ theorem is interesting on several levels.
Firstly, it is surprising that having some information on the behaviour of a group at
infinity (in particular, its number of ends) can tell us about the algebraic structure
of the group as a whole. In addition, it tells us that groups with more than one end
are sparse, as they must fall into these two relatively specific cases. Furthermore,
in the context of Bass–Serre theory, splittings of a group can be seen as an action
on a tree. Specifically, a splitting of a group G over a subgroup H can equivalently
be defined as a transitive and non-trivial action of G on a tree with H an edge
stabiliser. Therefore, Stallings’ theorem can also be understood in terms of actions
of groups on trees; linking back to our main theme.
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Finally, we discuss actions of groups on metric spaces which are a slight general-
isation of trees. One way to define a (simplicial) tree is as a graph in which there is
precisely one path between any two points. Section 5 explores the consequences of
relaxing the word ‘graph’ in this definition to ‘metric space’ in general. This gives
us the definition of R-trees. As we see in the first three sections, group actions on
trees are relatively well-understood through Bass–Serre theory. However, problems
are encountered in attempts to apply these techniques to R-trees. For example,
even the Fundamental Theorem of Bass–Serre Theory, which allows one to recover
a group from a tree on which it acts, does not hold in this slightly more general
class of metric spaces. However, R-trees and the groups which act on them have
played a significant role in geometric group theory, appearing in the study of auto-
morphisms of several different classes of groups. The final section of the paper aims
to highlight some of the ways in which R-trees and simplicial trees differ, as well
as giving an introduction to the alternative methods used in the study of R-trees.
Finally, we describe some of the applications of these metric spaces, aiming to give
the reader an idea of their value.

After defining R-trees, we give some examples, including examples of R-trees
which are not simplicial. One way in which R-trees arise is as limits of hyper-
bolic metric spaces (under a suitable notion of convergence), and we explore this
construction and some of its consequences.

We then move on to group actions on R-trees, beginning by classifying the isome-
tries of these spaces. As in many areas of geometric group theory, there are several
notions of ‘nice’ group actions; the ones of interest here are free, non-trivial, and
stable actions.

The majority of the section covers band complexes; a band complex is a certain
type of relative CW complex which describes the action of a group G on an R-tree.
This brings us to the Rips Machine, an algorithm which takes a band complex and
transforms it into a ‘normal form’: a disjoint union of smaller subcomplexes, each
of which is of one of four types. These types are simplicial, surface, toral, and thin,
and they describe features of the structure of G in a similar way to that in which
graphs of groups describe the structure of groups acting on trees.

To finish, we give a brief survey of the applications of R-trees. Their appearance
as limits of hyperbolic spaces mean that they arise particularly often in the study
of hyperbolic groups, and we state some of these results here. Also discussed is
Marc Culler and Karen Vogtmann’s Outer Space, a powerful tool in the study of
automorphisms of free groups and another utilisation of R-trees.

Note 1.1. Throughout the paper there are some common concepts, namely of graphs
and splittings. Graphs in the sense of Serre [Ser80] are defined in section 2, but
it is worth noting that a different notion of a graph (simplicial or metric) is used
in section 5. For the discussion of splittings the reader should refer to section 4,
although the definition of the HNN extension first appears in 2 in conjunction with
discussion of properties of Baumslag-Solitar groups.

2. Baumslag-Solitar groups and their generalisation

In this chapter we will explore a certain class of groups, which were initially
introduced in [BS62]. They have since served as examples and counterexamples of
groups with different properties.
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2.1. Definition and first properties.

Remark 2.1. In the discussion that will follow, we will use epimorphism to mean
a surjective group homomorphism and monomorphism to mean an injective group
homomorphism.

Definition 2.2. A Baumslag-Solitar group BS(m,n) is a group given by the pre-
sentation

BS(m,n) = ⟨ a, t | t(am)t−1 = an ⟩
where m,n ∈ Z \ {0}.

Remark 2.3. Note, that for m = n = 1, BS(m,n) = ⟨a, t | tat−1 = a ⟩ ∼= Z × Z.
This case seems to be regarded as somehow seperate in the literature.

The first property of these groups that we will consider, and the one that moti-
vated Baumslag and Solitar in [BS62], is that of being (non-)Hopfian.

Definition 2.4. A group G is said to be Hopfian if every epimorphism from G to
itself is injective. In other words, if G/N ∼= G implies N = 1. Otherwise, we say
G is non-Hopfian.

Before we proceed, we should mention that examples of Hopfian groups include:

(1) simple groups;
(2) (Q,+);
(3) finitely generated residually finite groups (by the theorem of Mal’cev, 1940),

where we say that G is residualy finite if for each g ̸= 1G in G, there exists a
finite group F and a group homomorphism ϕ : G→ F such that ϕ(g) ̸= 1F .

(4) finitely generated free groups.

Examples (1) - (3) were taken from [CSC23]. An interested reader can find proofs
of (3) and (4) being Hopfian in [LS15, chapters I, IV].

Important example 2.5. [BH11, page 514] The group BS(2, 3) = ⟨a, t|t(a2)t−1 =
a3⟩ is non-Hopfian. To see that, one considers ϕ : BS(2, 3) → BS(2, 3) defined on
generators as a 7→ a2, and t 7→ t. Note, that a = a3a−2 = ta2t−1a−2, so a is in the
image of ϕ. Therefore, ϕ is onto, but also [a, tat−1] = atat−1a−1ta−1t−1 is mapped
to identity by ϕ, thus being an example of a nontrivial element in ker(ϕ).

2.1.1. Baumslag-Solitar groups as HNN extensions. In this subsection we will follow
the definitions and conventions from [BH11, pages 497-498].

Definition 2.6. Let G be a group, ϕ : A1 → A2 an isomorphism between two
subgroups A1,A2 of G. A HNN extension of G associated to that data is the quotient
of G∗⟨t⟩ by the smallest normal subgroup containing {a−1tϕ(a)t−1 |a ∈ A1}. Thus,
we can represent that extension by a relative presentation

G∗ϕ = (G, t | t−1at = ϕ(a),∀a ∈ A1).

Remark 2.7. If A is an abstract group isomorphic to both A1, A2, then instead of
G∗ϕ we may write G∗A. We refer to G∗A as a ‘HNN extension of G over A’.

Example 2.8. BS(m,n) is a HNN extension of Z = ⟨b⟩. To see this, we consider
two subgroups of Z, mZ = {bmk |k ∈ Z} and nZ = {bnk |k ∈ Z} with m,n ∈ Z\{0}.
Note, that we are using multiplicative notation for the ease of the later argument,
so bm means “add b to itself m times”. Define ϕ : mZ → nZ, by bmk 7→ bnk. Then,
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ϕ is an isomorphism, and we can consider Z∗ϕ = (Z, t | t−1at = ϕ(a),∀a ∈ mZ). It
is not hard to see though, that because Z = ⟨b⟩, we have Z∗ϕ = (b, t | t−1((bk)m)t =
ϕ((bk)m), ∀bk ∈ Z) = ⟨b, t | t−1(bm)t = bn⟩, which is exactly the presentation of
BS(m,n).

2.1.2. Isomorphism problem. The next consideration that should come to mind is
which of the groups BS(m,n) are isomorphic, and what are the conditions on m,n
for it to happen. The answer is known for this family of groups, and can be found
in [Mol91] as the following theorem.

Theorem 2.9. The groups BS(m,n) and BS(p,q) are isomorphic if and only if for
a suitable ϵ ∈ {−1, 1} either m = pϵ and n = qϵ, or m = qϵ and n = pϵ.

We will omit the proof in the interest of time, and instead go on to talk about
how the behaviour of BS(m,n) changes depending on m,n.

2.1.3. Properties depending on m,n. We will begin by briefly coming back to the
notions of Hopficity and residual finiteness. Following the exposition in [dlH00,
III.21], and the results in [CL83] we can state:

Theorem 2.10. Consider the group G = BS(m,n) = ⟨a, t | tamt−1 = an⟩. Then
the assertions below are true:

• if either m or n is in {−1, 1} or if |m| = |n|, then G is residually finite and
therefore Hopfian;

• otherwise G is not residually finite. Moreover, G is Hopfian if and only if
m, n have the same set of prime divisors.

Remark 2.11. In the theorem above we are not stating the result as introduced
in [BS62]. That is because it incorrectly stated that BS(m,n) is Hopfian when m
or n divides the other, even if their sets of prime divisors are not the same. The
correction was made in the paper [Mes72] by Meskin.

Departing from being Hopfian, it is important to mention that the groupsBS(1, n)
are widely referred to in the literature as the solvable Baumslag-Solitar groups - see
e.g. [BDPD18], [FM98] or [Gro96]. Indeed, the following holds:

Proposition 2.12. The group BS(m,n) is solvable if 1 ∈ {|m|, |n|}.

Remark 2.13. Before we give a sketch of a proof for the result above, let us recall
what it means for a group to be solvable (or soluble). The classical definition is that
a group G is soluble if it has a finite subnormal series G = G0 ≥ G1 ≥ . . . ≥ Gr = 1
with each factor group Gi/Gi+1 abelian. By subnormal series we mean a series of
subgroups of G, each satisfying Gi ⊴Gi+1.

Sketch proof of 2.12. Suppose 1 ∈ {|m|, |n|}. Note, that thanks to 2.9 we can
without loss of generality consider m = 1. Then G = BS(1, n) = ⟨a, t | tat−1 = an⟩,
and according to [Gil79, Theorem 5], for n ̸= 0 ⟨a, t | tat−1 = an⟩ ∼= Z[ 1n ] ⋊ ⟨t⟩
where t acts by multiplication by n (we should remark that the isomorphism is not
easy to see and that by Z[1/n] we mean the underlying abelian group of the ring
Z[1/n] = {a0 + a1

n + . . . + ak
nk | k ∈ N, ai ∈ Z}). Note, that if G = BS(1, 0), then

G = ⟨a, t | tat−1 = 1⟩ = ⟨a, t | a = 1⟩ = ⟨t⟩ ∼= Z. As Z is abelian, it is soluble (just
consider subnormal series Z ≥ 1). Thus we only consider n ̸= 0, and note that, for
a semidirect product G = H ⋊K, G/H ∼= K and H ⊴G. Thus we get a subnormal
series BS(1, n) ∼= Z[ 1n ]⋊ ⟨t⟩ ≥ Z[ 1n ] ≥ 1 with abelian factors. □
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Remark 2.14. The converse of the proposition 2.12 is also true. However, because
we omit the proof of the converse statement, the result was stated only one way.

2.2. Graphs of groups and G-trees. For the discussion in this subsection we
will follow [Ser80, chapter I], with a slight change of notation.

Definition 2.15. A graph Γ consists of

• a set X = V (Γ),
• a set Y = E±(Γ),
• Y → X ×X with y 7→ (i(y), t(y)), and
• Y → Y with y 7→ y

which satisfy the following condition: for each y ∈ Y we have y = y, y ̸= y and
i(y) = t(y).

We call elements of X vertices, and elements of Y (oriented) edges. Given y ∈ Y ,
the edge y is said to be the inverse edge. Note, that we can define a morphism of
graphs by mapping vertices to vertices, and mapping an edge between two vertices
to an edge between their images.

Another notion that we can associate to a graph Γ is that of orientation. That is,
an orientation of Γ is a subset Y+ of Y such that Y is a disjoint union of Y+ and Y+.
We can then define, up to isomorphism, an oriented graph Γ+, by giving the two
sets X and Y+ with a map Y+ → X ×X. The set of edges Y is the disjoint union
we described before. Given an oriented graph Γ+, we may denote the positively
oriented edges E(Γ+) = Y+ = E±(Γ+) \ Y+.

We are almost ready to define trees, which is a class of graphs that will be
important later. The only thing we need, is the definition of a circuit.

Definition 2.16. For an integer n ≥ 1, Circn is an oriented graph with X =
{0, 1, . . . , n − 1} and edges Y+ = {y | (i(y), t(y)) = (i, i + 1), i ∈ {0, 1, . . . , n − 1}
where (n− 1, (n− 1) + 1) is set to (n− 1, 0)}. A circuit (of length n) in a graph is
any subgraph isomorphic to Circn.

Definition 2.17. A tree is a connected non-empty graph with no circuits.

Remark 2.18. Note, that the condition of having no circuits forces trees to have
only one oriented edge between two vertices, as going along an edge y and then
along y would give a circuit of length 2. Thus, we can speak of a set E(T ) without
ambiguity.

Definition 2.19. A graph of groups (G,Γ) consists of a graph Γ, a group Gp for
each p ∈ V (Γ), and a group Gy for each y ∈ E±(Γ), together with a monomorphism
Gy → Gt(y) (denoted a 7→ ay). In addition, it is required that Gy = Gy.

If in the above definition Γ is a tree, then we call (G,Γ) a tree of groups.
Another notion is one of a G-tree. We will connect it to the concept of a tree of

groups later in this subsection.

Definition 2.20. Let G be a group, and Γ a graph on which it acts. An inversion
is a pair g ∈ G, y edge of Γ, such that gy = y. If there is no such pair, we say that
G acts without inversion.

Note, that saying that G acts without inversion on Γ is exactly the same as
saying that the G-action preserves the orientation of Γ.
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Definition 2.21. A G-tree is a tree on which the group G acts by automorphisms,
without inversion.

Definition 2.22. For a graph of groups (G,Γ), the group F (G,Γ) is generated by
groups Gp and the elements y ∈ E±(Γ) subject to relations y = y−1 and yayy−1 =
ay if y ∈ E±(Γ), a ∈ Gy.

A more precise way to formulate this definition is to consider ∆ being a free
product of the groups Gp and the free group with basis E(Γ). Then F (G, Y ) is the
quotient of ∆ by the normal subgroup generated by elements yy and yayy−1(ay)−1,
y ∈ E±(Γ), a ∈ Gy.

Definition 2.23. Let T be a maximal tree of Γ. The fundamental group π1(G,Γ, T )
of (G,Γ) at T is the quotient of F (G,Γ) by the normal subgroup generated by the
elements y ∈ E(T ).

[Ser80, section I.5.4] includes a result, that gives a connection between a G-tree
and a certain graph of groups. That is, for a G-tree X, G can be identified with
a fundamental group π1(G, Y, T ) of a graph of groups (G,Γ), where Γ = G \ X.
Note, that sometimes the discussed G-tree is called the Bass-Serre tree of (G,Γ).

We will state the theorem as it appears in [Bay23, Corollary 7.45]. The statement
in [Ser80, Section I.5.4, Theorem 13] contains more technical details, but at a price
of having to set up notation that will not be of use for the reminder of this chapter.

Theorem 2.24. The natural action of the fundamental group of a graph of groups
on its universal cover is a non-inversive action of a group of a tree, and conversely
every non-inversive action of a group G on a tree X is isomorphic to the action of
the fundamental group of G\X on its universal cover; in particular, G ∼= π1(G\X).

Remark 2.25. The construction of the universal cover of a graph of groups men-
tioned in the theorem above is given in 2.30.

We will now see the graph of groups for HNN extensions, and thus Baumslag-
Solitar groups. For completeness, we will also look at a graph of groups for a free
product with amalagamation. Afterwards we will state the construction of the
Bass-Serre tree given a graph of groups, and use it to find the Bass-Serre tree of
BS(m,n).

Example 2.26. [Ser80, section I.5.1] Let us consider a graph of groups Γ consisting
of one vertex p and a single oriented loop labelled by y, attached to p, as shown in 1.
We let Gy = A. We have monomorphisms, as in the figure. As the maximal subtree
of Γ is {P} the fundamental group π1(G,Γ, P ) = F (G,Γ), and it is generated by
Gp together with g = gy, subject to relations gayg−1 = ay for each a ∈ A.

We can identify A with a subgroup of G = Gp by using the monomorphism
a 7→ ay, and we let ϕ denote the other monomorphism, a 7→ ay. Then π1(G,Γ, P )
is exactly the group G∗ϕ.

Figure 1. Graph Γ and monomorphisms it comes with
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Example 2.27. [Ser80, section I.5.1] Let us now consider a graph of groups Γ
consisting of two vertices p, q and a segment labelled by y between them, as shown
in 2. As the maximal subtree of Γ is the whole of Γ, the fundamental group
π1(G,Γ,Γ) is F (G,Γ) quotiented by the normal subgroup generated by y. Thus,
we can think of it as being generated by groups Gp, Gq subject to relation ay = ay

for all a ∈ Gy. But Gy is identified with a subgroup A1 ≤ Gq via m1 : a 7→ ay and
with a subgroup A2 ≤ Gp via m2 : a 7→ ay. Because those identifications are done

via monomorphisms, this means that A1
∼= A2, via ϕ : A1 → A2, l 7→ m−1

1 (l) 7→
m2(m

−1
1 (l)) for all l ∈ A1. Thus the presentation of π1(G,Γ,Γ) = ⟨Gp, Gq | l =

ϕ(l), l ∈ A1⟩, which is exactlyGp∗A1
Gq ∼= Gp∗Gy

Gq (Compare this with a definition
of amalgamated free product 4.17).

Figure 2. Graph Γ described in 2.27

Remark 2.28. One could now see why we needed to see both the graph of groups for
a HNN extension and for an amalgamated free product. Each of those corresponds
to a fundamental building block of a general graph of groups, namely a loop at a
point or an edge.

Important example 2.29 (2.26 for BS groups). In this example we will use
multiplicative notation when talking about Z = ⟨b⟩.

We let Y be a graph with vertex group Gp = Z, and edge group Gy = mZ. We
set the monomorphism a 7→ ay to be (bm)k 7→ (bm)k, and this identifies mZ with its
copy living inside Z. We let the other morphism be ϕ : mZ → Z, (bm)k 7→ (bn)k.
Note, that ϕ is actually mapping mZ into nZ inside Z. Using that observation, the
fundamental group of Y is Z∗ϕ, which by 2.8 is the group BS(m,n). Finally, note
that gy mentioned in 2.26 is equal to t in this case.

The next construction will be based on [GPPX24, pages 23-24], cross-referenced
with [Wil04] and [Baj17], where in the latter the less general case is discussed.

Construction 2.30. Let X = (G,Γ) be a graph of groups, with underlying graph
Γ and fundamental group π = π1(G,Γ, T ), where T is a maximal tree of Γ. The

Bass-Serre tree X̃ of X is constructed as follows:

• it has vertices V (X̃) = {π/Gx | x ∈ V (Γ)}, and
• its edges are E(X̃+) = {π/ϕ(Gy) | y ∈ E(Γ+)} where ϕ : Gy → Gt(y) is the
monomorphism which comes with X by definition 2.19, and

• for each gϕ(Gy) ∈ E(X̃+), i(gϕ(Gy)) = gGi(y) and t(gϕ(Gy)) = ggyGt(y).

Having stated the construction, two questions should come to mind, namely -
why is this a connected graph and moreover, a tree. Instead of addressing those,
we will see what this construction gives for BS(m,n), and hopefully believe the
resulting graph is indeed a tree.

Important example 2.31. To construct the Bass-Serre tree of the Baumslag-
Solitar group BS(m,n) = ⟨b, t | tbmt−1 = bn⟩, we will use its graph of groups X,
which was described in 2.29. Recall that X is a loop, i.e. has only one vertex, with
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vertex group Gx = Z = ⟨b⟩, and an edge attached to said vertex, with edge group

Gy = mZ. Thus, vertices of X̃ are cosets gZ, and edges are g(ϕ(mZ)) = g(nZ),
with g ∈ BS(m,n). Let us denote H = nZ. Finally, for each edge gH, if we assume

it is in E(X̃+), o(gH) = gZ and t(gH) = gt(nZ). The resulting graph is depicted
in 3. The following are worth noting:

(1) because of the relation tbmt−1 = bn, we get that tbm = bnt and bmt−1 =
t−1bn. Thus bntZ = tbmZ = tZ are all the same coset, and if 0 ≤ f < n,
then bf tZ ̸= tZ. This is because, if they were equal, it would mean that we
have a relation bf = tblt−1 for some l ∈ Z, which is not true. Similarly,
bmt−1Z = t−1bnZ = t−1Z and for all 0 ≤ f < m, then bf t−1Z ̸= t−1Z.
This explains why the described vertices appear as adjacent to the vertex
labelled by Z in the figure.

(2) As BS(m,n) acts on X̃ by automorphisms, and above we saw that the
coset Z corresponds to a vertex of valence n+m, all vertices will have that
valence.

Figure 3. Bass-Serre tree for BS(m,n)

We have discussed the graph with fundamental group BS(m,n), as well as, the
tree associated to it. We can now go on to generalise Baumslag-Solitar groups.

2.3. Generalised Baumslag-Solitar (GBS) groups. In the previous section
we saw the connection between certain trees and graphs of groups. It should then
come as no surprise that we can define our group in terms of one or the other.
Depending on what properties of GBS groups one wants to explore, one of the
following definitions might be preferable.
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Definition 2.32 ( [For03]). A generalised Baumslag-Solitar tree is a G-tree whose
vertex and edge stabilisers are all infinite cyclic. The groups G that arise this way
are called generalised Baumslag-Solitar groups.

Definition 2.33 ( [Lev07]). A generalised Baumslag-Solitar group G is the fun-
damental group of a finite graph of groups Γ whose vertex and edge groups are all
infinite cyclic.

Let us start by looking at some examples of GBS groups.

Example 2.34. As one would hope, Baumslag-Solitar groups BS(m,n) are GBS
groups. One can see it using the definition 2.33 - a graph with the fundamental
group BS(m,n) which we obtained in 2.29 has vertex and edge groups Z and mZ,
respectively.

Example 2.35. A torus knot group, T (p, q) = ⟨x, y|xp = yq⟩ where p,q are distinct
primes, is a GBS group.

This can be seen by considering the graph of groups from figure 4, which by the
discussion in [Jon23] has T (p, q) as its fundamental group.

Figure 4. Graph of groups for ⟨x⟩ ∗xp=yq ⟨y⟩ and morphisms it comes with

Having seen the two examples which get quoted most often in the literature as
first examples of GBS groups, we can now consider a collection of results about
this class of groups.

2.3.1. Elementary GBS groups. Firstly, note that, as GBS graphs Γ have all edge
and vertex groups infinite cyclic, we can choose their generators. Then, the inclusion
maps of edge groups into vertex groups become multiplications by non-zero integers.
Thus, we can endow an oriented edge e with a label λe ∈ Z \ {0} describing the
inclusion of Ge into Gi(e). A pair of opposite edges ϵ = (e, e) is a non-oriented edge,
and it can be endowed with a label (λe, λe). Note, that this construction can be
applied to both loops and segments of a graph Γ.

In [Lev07] Levitt makes the following distinction.

Remark 2.36. The elementary GBS groups G, with Γ being a graph of groups with
π1(Γ) = G are:

• Z with Γ = point,
• Z2 with Γ = (1, 1)-loop,
• Klein bottle group K = ⟨x, t | txt−1 = x−1⟩ = ⟨a, b | a2 = b2⟩ with either Γ
= (1,−1)-loop or (2, 2)-segment.

The feature that the above have in common is that the Bass-Serre tree T associated
to each of them is either a point or a line. Moreover, they are the only graphs for
which that holds.
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Figure 5. Graphs with elementary GBS fundamental groups

2.3.2. Properties of GBS groups developed in [For03]. This paper concerns JSJ
decompositions and their uniqueness for finitely presented groups, and uses GBS
trees as examples. Thus, the paper reviews some properties of GBS groups.

Firstly let us remark on JSJ decompositions and then we will proceed to state
some definitions for the situation when we have any G-tree.

Remark 2.37. [GL17] JSJ decompositions first appeared in the context of 3-
dimensional topology of manifolds. For a group G its JSJ decomposition over a
given family of its subgroups A is an A-tree T satisfying certain properties. By an
A-tree we mean a G-tree T whose edge stabilisers are in A. It is important to note,
that JSJ decompositions do not always exist and if they do, they are not unique.

The aim of [For03] is to use two GBS trees as example of JSJ decompositions
of a finitely presented group G which are not related by conjugation, conjugation
of edge-inclusions, and slide moves. That gives a negative answer to the question
of Rips and Sela.

Definition 2.38. Let T be a G-tree. An element γ ∈ G is called elliptic if it fixes
a vertex of T . Otherwise γ is said to be hyperbolic.

Elements γ, δ ∈ G are defined to be commensurable if there exist m,n ∈ Z \ {0}
such that γm = δn. The commensurator of γ is the set of all δ ∈ G such that δγδ−1

and γ are commensurable. We denote it as Comm(γ).

Remark 2.39. As shown in [Ser80, Proposition 24] if γ is hyperbolic, then there is
a γ-invariant path (or line) in T , on which γ acts by translation. We call this path
an axis of γ.

Lemma 2.40 ( [For03, 2.5], [Lev07, 2.1] combined). Let T be a G-tree. If γ ∈ G is
hyperbolic then Comm(γ) stabilises its axis. If additionally T is a GBS tree with G
non-elementary, then any two nontrivial elliptic elements γ, δ are commensurable,
and the commensurator for an elliptic element γ is the whole of G.

Remark 2.41. Assuming that T is a GBS tree with non-elementary G actually
grants us something more. According to [Lev07, 2.1], in that situation, an element
γ ∈ G is elliptic if and only if its commensurator equals G. This is because, if γ
is hyperbolic, then its axis is invariant under Comm(γ). Thus, G ̸= Comm(γ), as
T is not a point or a line. The latter comes from the feature that we pointed out
about the graphs of elementary groups in 2.36.

We are also able to state a lemma concerning subgroups of a GBS group.

Lemma 2.42. Let T be a GBS tree with group G. Every subgroup H of G is either
a generalised Baumslag-Solitar group or a free group (and not both, unless G = Z).
If H is free and non-abelian, then every non-trivial element of H is hyperbolic.

The final result of this part of the section is below to showcase some other
interesting properties of GBS groups. Some concepts that appear in it will not be
explored in this chapter or this project at all, but we will provide on some references
for an interested reader.
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Lemma 2.43. Let T be a GBS tree with group G ≇ Z. Then:

(1) G is not free;
(2) G is torsion free and has cohomological dimension 2;
(3) G has one end, if it is finitely generated;
(4) T contains a G-invariant line if and only if G is isomorphic to Z × Z or

the Klein bottle group.

Remark 2.44. The following comments are worth making about the above lemma:

• Recall, that an infinite group is said to be torsion free if it contains no finite
order elements.

• As the cohomological dimension will not be explored in this project, one
of the references the reader could look at is [Bro08]. If familiar with the
concept the paper of P. Kropholler [Kro90, Theorem C] provides an inter-
esting result. It states that a non-cyclic group belongs to a certain class of
finitely generated groups of cohomological dimension 2 if and only if it is a
fundamental group of a finite graph of infinite cyclic group. The latter is
exactly a non-cyclic GBS group, in light of definition 2.33.

• The reader can explore the concept of ends in Section 4.

We will now go on to state a result which tells us information about all generalised
Baumslag-Solitar groups.

2.3.3. Classification of GBS graphs.

Remark 2.45. Note, that sometimesGBS graphs are called graphs of Zs. This again
points at how GBS groups generalise Baumslag-Solitar groups, as BS groups are
precisely the HNN extensions of Z.

The following theorem of Whyte classifies graphs of Z, thus by the above remark,
GBS graphs.

Theorem 2.46. [Why01, Theorem 0.1] If Γ is a graph of Zs and G = π1(Γ) then
exactly one of the following is true:

(1) G contains a subgroup of finite index of the form Fn × Z, where Fn is the
free group on n generators.

(2) G = BS(1, n) for some n > 1.
(3) G is quasi-isometric to BS(2, 3).

Corollary 2.47. All the groups BS(m,n) with 1 < m < n are quasi-isometric to
each other.

Remark 2.48. Recall that a map f : X → Y between two metric spaces is called a
quasi-isometry if there exist constants λ ≥ 1, c ≥ 0 and K such that:

(1) 1
λdX(x, x′)− c ≤ dY (f(x), f(x

′)) ≤ λdX(x, x′) + c (q-i embedding), and
(2) ∀y ∈ Y ∃x ∈ X with d(y, f(x)) ≤ K (quasi-surjectivity).

We can think of a finitely generated group G as a metric space, as given a generating
set S of G, we can consider the word metric dS . Recall, that dS(g, h) = lS(g

−1h) =
{length of a shortest word representing g−1h in S∪S−1}. It is a fact that if S, T
are both finite generating sets for G, then (G, dS) and (G, dT ) are quasi-isometric.
We say that two finitely generated groups G, H are quasi-isometric if there exists
a quasi-isometry f : (G, dS) → (H, dT ) where S, T are generating sets of G, H,
respectively.
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In the sketch below we will be following an outline that was provided in [Why01].

Idea of proof of 2.46. Let us start by letting G be the fundamental group of a graph
of groups Γ, T a Bass-Serre tree for G. The main ideas of the argument are:

• We can construct XG which in appropriate sense reflects the geometry of
G, and on which G acts nicely.

• The constructed XG is a contractible 2-complex, which topologically is a
product T × R. Metrically, it differs from the product metric by v × R
getting scaled by a fitting warping function T → R+.

• Due to the construction, the warping function depends on height change
between vertices. Said height change can be seen as quantitative analogue
of orientation.

• The classification of graphs of Zs reduces to classifying coarsely oriented
trees. This is by showing that being given a quasi-isometry between the
graphs there is a quasi-isoetry coarsely respecting orientation between trees,
and vice versa when given a coarsely orientation preserving quasi-isometry
between Bass-Serre trees.

• Due to caring about coarsely orientation preserving quasi-isometries, we
can consider a special type of trees and develop their classification.

• The final quasi-isometries are by considering lines of “constant slope” and
building quasi-isometries line by line.

The above are sufficient to classify graphs of Zs up to quasi-isometry. □

2.3.4. Quotients and subgroups of GBS groups. In this final subsection we will
follow the work [Lev15] of Levitt. That reference contains many interesting results,
and thus we will only state and comment on a few of them. If any of the statements
pique readers interest, they are encouraged to find their proofs and context in the
paper.

Lemma 2.49. [Lev15, Lemma 2.1] Any 2-generated GBS group G is a quotient
of some BS(m,n).

Idea of proof. This lemma follows, if we show that there is a generating pair (a, t)
for G, with a elliptic. We will take that on faith and proceed, an interested reader
can take a look at the comments in the paper. Thus, assume we have such pair.
Then as a is elliptic, by 2.40, its commensurator is the whole of G, so in particular
tat−1 is in it. Then (a, t) satisfy the relation tamt−1 = (tat−1)m = an for some non-
zero integers m,n. Therefore, G is a quotient of BS(m,n) by any other occurring
relations. □

Definition 2.50. At the beginning of subsection 2.3.1 we introduced a way of la-
belling a GBS graph of groups Γ. We call Γ reduced if any edge e such that
λe ∈ {−1, 1} is a loop.

Remark 2.51. Any labelled graph can be reduced by a sequence of elementary
collapses, which do not change G. If we have a segment in our graph it corresponds
to an amalgamated free product. Let us see what happens if one of its ends has
label 1, as on the figure 6 (note that vertex groups are marked with capital letters,
edge lables with greek letters). Then as described in [For06], such edge can be
shrunk to the point, which corresponds to replacing A ∗C C with A.
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Figure 6. Collapsing an edge with one of the labels being 1

Remark 2.52. There are other moves that we can perform on a graph of groups Γ,
and they are described in eg. [For06].

Lemma 2.53. [Lev15, Lemma 2.8] If a GBS group G is 2-generated and is not a
solvable BS(1, n), it may be represented by a labelled graph with no label equal to 1
or −1.

There is more that we can say about a GBS graph if we make other assumptions.

Proposition 2.54. [Lev15, Proposition 5.1] Let Γ be a reduced labelled graph
representing a GBS group G which is a quotient of BS(m,n).

(1) There is a bound, depending only on m and n, for the number of edges of
Γ.

(2) If m ̸= n and G is not the Klein bottle group K, every prime p dividing a
label of Γ must divide mn.

Remark 2.55. The proof of this proposition follows from using a result [Lev15,
Theorem 4.1], which tells us information about labels of a graph Γ of a 2-generated
GBS group depending on the structure of Γ. The possible graphs in that case look
either like segments, or like lollipops and those two cases are considered in a proof
of the above.

A corollary of [Lev15, Proposition 5.6] tells us how to read off information about
quotients from the GBS graph.

Corollary 2.56. [Lev15, Corollary 5.7] If BS(m,n) has a GBS quotient G ̸= K
represented by a labelled graph Γ with no label {−1, 1} such that Γ is not homeomor-
phic to a circle, then BS(m,n) has infinitely many non-isomorphic GBS quotients.

Remark 2.57. The other results of the paper concern maps between GBS groups,
conditions for when one Baumslag-Solitar group embeds in the other, results about
subgroups of BS(n, n) and much more.

Both [Lev15] and [Why01] obtain results about Baumslag-Solitar groups by using
GBS groups. It is thus important to note, that GBS groups can be studied both
because they are interesting groups to consider and because they provide a way to
learn more about Baumslag-Solitar groups.

2.4. Concluding remarks. This section is not an exhaustive account of either all
the properties or work on (generalised) Baumslag-Solitar groups. Thus, it seems
fitting to mention some other properties and papers which have not been discussed
in the course of our exploration.

(1) An interesting question is that of growth of Baumslag-Solitar groups. A
starting reference could be [dlH00] where definitions of growth and some
references to the current results are provided. There also newer papers on
the topic, e.g. [SS18] or [FKS11].
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(2) Despite BS(m,n) being amenable if and only if |m| = 1 or |n| = 1
[CGMS24], considering weaker forms of amenability for Baumslag-Solitar
is still a worthwhile endevour. See for example [CV15].

(3) As we have seen in 2.9, the isomorphism problem for Baumslag-Solitar
groups has a straightforward answer. This is however not the case for the
GBS groups, and the account of that can be found in [CF08].

With the above list we finish the dive into Baumslag-Solitar groups and proceed
to the next parts of the report.

3. Complexes of groups

In this section we will introduce the construction of complexes of groups, largely
due to Haefliger [Hae91]. This generalises the construction of graphs of groups due
to Bass and Serre, discussed in Section 2.2. A related construction of triangles
of groups was studied by Gersten and Stallings [Sta91] and complexes of groups
were studied in two dimensions, independently of Haefliger, by Corson [Cor92].
The exposition here largely follows the beginning of [BH11, Chapter 3.C], with
some modification to notation and with some elements explored in more detail.
Specifically, all the examples and the exposition which motivates the details of
Definitions 3.2, 3.9, 3.10, 3.12 and 3.23 is my own work.

The construction of graphs of groups arose by abstracting emergent features
of group actions on trees. Analogously, to define complexes of groups, we will
consider certain group actions on geometric complexes associated to so-called small
categories without loops. However, unlike with graphs of groups, not every complex
of groups can be realised as a quotient of group action on a complex.

3.1. Small categories without loops. We will first recall the standard construc-
tion of the geometric realisation |P | of a poset P . Given a poset P , a chain C ⊆ P
is a totally ordered subposet, i.e. either x ≤ y or y ≤ x for all x, y ∈ C. We say C
is an n–chain if n = |C | − 1. We denote the standard k–simplex as ∆k, where

∆k := {(x0, . . . , xk) ∈ Rk+1 | xi ≥ 0 ∀i and x0 + · · ·+ xk = 1}.

To construct |P |, we first associate to each n–chain in P , an n–simplex ∆C . The
elements of C correspond to the vertices of ∆C . Such a ∆C , and all of its faces,
are canonically oriented due to the ordering in P . Using this orientation, we glue
simplices corresponding to subchains to a face of the higher dimensional simplex,
which corresponds to the superchain. Specifically, let C1 ⊂ C2 be chains, with C1

an n–chain. Let f denote the orientation preserving isometry from (the closed)
∆C1

to the relevant (closed) n–dimensional face of ∆C2
. We then glue ∆C1

to ∆C2

using f . Taking ∼ to be the transitive closure of the relation defined by all such f ,
for all chains and subchains of P , we then have

|P | :=

 ⊔
C⊆P
chain

∆C

 / ∼ .

See Fig. 7 for an example, where |P | is three solid tetrahedrons. Two tetrahe-
drons, on the left half of the picture, share a face, and all three tetrahedrons share
an edge, which is vertical and centred in the picture.
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∅

{1} {2}

{1, 4} {1, 3} {2, 3}

{1, 2, 3, 4}

Figure 7. The diagram of a poset where ≤ is ⊆ (left) and a picture of the cor-

responding complex |P | (right) with the original poset highlighted
in black.

Posets, and the construction |P |, give a combinatorial description of certain
simplicial complexes. However, not all complexes can be realised by this construc-
tion. For example, consider S1 realised as two edges connected at their ends. This
limitation is related to the following observation.

Observation 3.1. All the information of a poset P is encoded exactly by the follow-
ing category C: The objects of C are the elements of P , and there is a morphism
x → y in C exactly when x ≤ y in P . The category C is thin, meaning that for all
objects x, y in C, there is at most one morphism x→ y.

Bearing this in mind, with the aim of being able to construct S1 in a combi-
natorial way, we give the following definition. We say a category C is small if the
collection of morphisms of C fits in to a set.

Definition 3.2. A small category without loops (abbreviated scwol), is a small
category X such that for all composable morphisms x1 → x2 → · · · → xn, if
x1 = xn, then x1 = xi for all i, and each morphism is Idx1

.

Note that this definition means that no two distinct objects are isomorphic. It
also means that the only morphism x → x is Idx. Conversely, if a small category
satisfies both of these properties, then it is a scwol.

With geometry in mind, we call the objects of a scwol X vertices and denote the
set of vertices by V (X ). We call the non–identity morphisms of X edges and denote
the set of edges by E(X ). The morphisms give each edge a natural orientation,
which is why we denote the edges E(X ) not E±(X ), c.f. Definition 2.15. Given
some a ∈ E(X ), we denote the initial (source) and terminal (target) vertices by
i(a) and t(a) respectively. If two edges b and a satisfy t(b) = i(a), then we say
that a and b are composable and denote their composition ab, which is necessarily
another edge in E(X ). We have that i(ab) = i(b) and t(ab) = t(a). We now work
to construct a geometric realisation |X | of a scwol X , such that if X is thin, then
|X | matches the geometric realisation when considering X as a poset.

Let E(n)(X ) denote the set of all n–tuples of composable edges in X , i.e. if
(a1, a2, . . . , an) ∈ E(n)(X ), then

x1 x2 xn+1
a1 a2 · · · an
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is a composable set of edges in X . Note that here composition follows the tuple
order. This is the opposite order to that used in [BH11, Chapter 3.C]. Since all the
ai are in E(X ), none are identity morphisms. By convention, E(0)(X ) = V (X ). We
define the following maps, ∂i : E

(n)(X ) → E(n−1)(X ) on composable tuples, where

∂0(a1, . . . , an) = (a2, . . . , an)

∂i(a1, . . . , an) = (a1, . . . , aiai+1, . . . , an) 1 ≤ i < k

∂n(a1, . . . , an) = (a1, . . . , an−1).

We define ∂0(a) = i(a), and ∂1(a) = t(a). We also define maps, di : ∆
k−1 → ∆k

on simplices, where

di(t0, . . . , tk−1) = (t0, . . . , ti−1, 0, ti, . . . , tk−1) 0 ≤ i < k.

Definition 3.3. Given a scwol X , the geometric realisation, |X | is a simplicial
complex defined as

|X | :=
⊔
k

(
∆k × E(k)(X )

)
/ ∼ .

Where ∼ is the transitive closure of the relations

(di(x), t) ∼ (x, ∂i(t))

across all tuples t ∈ E(k)(X ).

In this definition, we had to take more care than with the geometric realisation
of a poset. This is because, in a poset, a composable tuple is completely determined
by its vertices (the chain), so the combinatorial face maps always corresponded to
taking subsets of those vertices. But in a scwol, we need to account for potentially
multiple edges between two vertices, so we must enumerate simplices using edges,
rather than vertices.

For those interested, the above construction of |X | corresponds to the standard
geometric realisation of the nerve (which corresponds to the union of all of our
E(k)(X )) of X . See [Goe09].

Given a scwol X , the dimension of X is the dimension of |X |, this is the largest
k such that E(k)(X ) ̸= ∅.

Example 3.4. The following scwol has geometric realisation S1, constructed by
identifying the ends of two 1–simplices.

Example 3.5. Any polygon can be realised as the geometric realisation of a scwol
X in the following way: Consider the polygon as a polygonal complex. Make a
vertex at the centre of each polygon in the complex. There is an edge from centres
of polygons to centres of faces of that polygon. The below picture shows the scwol
from this construction applied to a square.
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Example 3.6. Following the same procedure as the previous example, the scwol
associated to the complete graph on three vertices is given below.

Definition 3.7. Morphisms of scwols are exactly functors F : X → Y where the
source and target categories are scwols. We say that a morphism of scwols F : X →
Y is non-degenerate if F maps E(X ) to E(Y), and for all v ∈ V (X ), the restriction
of F to {a ∈ E(X ) | i(a) = v} is a bijection on that set of edges.

The requirement that a non-degenerate morphism maps E(X ) to E(Y) means
that non-identity morphisms must be mapped to non-identity morphisms. A mor-
phism of scwols F induces a map on the geometric realisations, we denote this
|F |. This acts on each simplex ∆ by the linear map determined by the image of
the vertices of ∆. Non-degenerate maps are important because they do not reduce
the length of compositions of non-identity maps, thus they preserve dimension and
restrict to homeomorphisms on cells. The importance of the second condition is
that if a group acts by non-degenerate morphisms, then the stabiliser of i(a) is con-
tained in the stabiliser of a, which is contained in the stabiliser of t(a) by virtue of
F being a functor. In this way, this condition guarantees that stabilisers respect the
category structure. The importance of this will become apparent when we define
complexes of groups.

(Non-degenerate) automorphisms of a scwols are (non-degenerate) invertible
morphisms F : X → X .

Definition 3.8. An action of a group G on a scwol X is a homomorphism from
G to the group of non-degenerate automorphisms of X such that the following two
conditions are met.

(1) For all a ∈ E(X ) and g ∈ G, we have g · i(a) ̸= t(a).
(2) For all a ∈ E(X ) and g ∈ G, if g · i(a) = i(a), then g · a = a.

Compare this definition with Definition 2.20. If X is finite dimensional, then the
first condition is guaranteed. For example, in the following scwol, if σ was mapped
to τ , then τ is mapped to µ and there is nowhere for a to map to.

σ τ µb a

ab

However, if we consider the action of the group Z on the poset Z, we see that
the first condition is not vacuous.

For each g ∈ G, denote the induced action on |X | as |g |. The second condition
means that if for some σ ∈ V (X ), we have g · σ = σ, then |g | fixes pointwise any
k-simplex corresponding to a composable tuple (a1, . . . , ak) with i(a1) = σ. This in
particular implies that if |g | fixes a simplex setwise, then it also fixes it pointwise.
This is important because we want to be able to quotient by this group action and
for the quotient map to be simplicial on |X |. Note that these restrictions mean
that many group actions that geometrically look like rotations about a point, or
reflections, are not possible. For instance, there is no non-trivial group action on
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the scwol given in Example 3.5. However, there is an action of the cyclic group of
order 3 on the scwol given in Example 3.6.

Given a scwol X , a group G, and an action as defined in Definition 3.8, we
can define the quotient scwol G\X in the following way. The vertices of G\X are
G\V (X ), similarly the edges ofG\X areG\E(X ). Let p : X → G\X be the quotient
map. We make G\X in to a scwol by defining i(p(a)) := p(i(a)), t(p(a)) := p(t(a)),
and where defined, p(b)p(a) := p(ba). Condition (1) of Definition 3.8 ensures that a
quotient of a scwol is also a scwol. Condition (2) ensures that p is a non-degenerate
morphism of scwols.

3.2. Complexes of groups. We will now define complexes of groups. These will
be a generalisation of graphs of groups and that theory can be recovered by realising
graphs as scwols, exactly as in Example 3.6. To motivate this construction, we will
recall that graphs of groups emerge from actions of groups on trees. Complexes of
groups sometimes emerge from an action of a group on a scwol, such a complex of
groups is called developable. The general definition of a complex of groups abstracts
the properties of developable complexes of groups. We will first give the abstract
definition of a complex of groups, then, to motivate these properties, we will define
the construction of a complex of groups associated to an action. Given a group G,
let Ad(g) : G→ G denote conjugation, Ad(g)(h) = ghg−1.

Definition 3.9. Given a scwol X , A complex of groups G = (Gσ, ϕa, ga,b) over X
consists of the following data.

(1) A group Gσ for each σ ∈ V (X ).
(2) A monomorphism ϕa : Gi(a) → Gt(a) for each a ∈ E(X ).

(3) An element ga,b ∈ Gt(a) for each composable pair (b, a) ∈ E(2)(X ).

The groups Gσ are called local groups, and the ϕa are called edge homomorphisms.
The elements ga,b are called twisting elements. These twisting elements must satisfy
the following compatibility conditions.

(1) Ad(ga,b)ϕab = ϕaϕb.
(2) ϕa(gb,c)ga,bc = ga,bgab,c.

We call a complex of groups simple if all the twisting elements are the identity
element of the relevant local group.

Note that compatibility condition (1) is vacuous if the dimension of X is less
than 2. Compatibility condition (2) is vacuous if the dimension of X is less than 3.
Compatibility condition (1) states that, up to conjugation by a twisting element, we
can compose homomorphisms along composable edges in the obvious way. Then in
this context, compatibility condition (2) states that this composition is associative.
To see this, we will use the following diagram.

Gσ Gτ Gµ Gν
ϕc

ϕbc

ϕb

ϕab

ϕa
.

Note that Ad(g) commutes with any homomorphism f in the following way

f Ad(g) = Ad(f(g))f.
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We could compose ϕaϕbϕc as (ϕaϕb)ϕc or ϕa(ϕbϕc). Applying compatibility condi-
tion (1), the first composition is (Ad(ga,b)ϕab)ϕc we then apply (1) again to get

(ϕaϕb)ϕc = Ad(ga,b)Ad(gab,c)ϕabc = Ad(ga,bgab,c)ϕabc.

Similarly, with the second composition, we get

ϕa(ϕbϕc) = ϕaAd(gb,c)ϕbc = Ad(ϕa(gb,c))ϕaϕbc = Ad(ϕa(gb,c)ga,bc)ϕabc.

Without any knowledge of the group Gν , in order to guarantee associativity of
composition, we require compatibility condition (2).

We now define a complex of groups associated to an action. In some sense, this
is the natural context of complexes of groups and motivates Definition 3.9.

Definition 3.10. Suppose we have X , G, G\X and p : G → G\X as described
after Definition 3.8. Denote the scwol G\X by Y. Let s : V (Y) → V (X ) be a
choice of section (as sets) of p|V (X ). The complex of groups H = (Gσ, ϕa, ga,b) over
the scwol Y associated to the action of G is defined as follows: We define the local
groups of H as the stabilisers under this section, Gσ := Stab(s(σ)). Since p is non-
degenerate, for each a ∈ E(Y) with i(a) = σ, there exists a unique ã ∈ E(X ) such
that i(ã) = s(σ) and p(ã) = a. However, there is no guarantee that t(ã) = s(t(a)).
Choose some ha ∈ G such that ha · t(ã) = s(t(a)). Do this for every edge in
E(Y). We define the edge homomorphisms of H to be ϕa := Ad(ha). We define
the twisting elements of H to be ga,b := hahbh

−1
ab .

There is a choice involved in defining the section s. Had we chosen different
representatives s′(σ), the resulting subgroup Stab(s′(σ)) would be conjugate to
Stab(s(σ)).

We now check that, if g ∈ Gi(a), then ϕa(g) ∈ Gt(a) as required. Observe

that h−1
a · s(t(a)) = t(ã) by construction. Then, because g ∈ Gi(a) = Stab(i(ã)),

and because g acts non-degenerately, g ∈ Stab(t(ã)). So gh−1
a · s(t(a)) = t(ã), so

ϕa(g) · s(t(a)) = s(t(a)) and ϕa(g) ∈ Gt(a). We see that ha is a good choice of
element to conjugate by to account for the (sometimes inevitable) fact that the
section s is discontinuous and maps in to multiple fundamental domains of X .

In the context above, given a well-chosen ha and some h ∈ Gi(a), we see that
h′a = hah, would also serve the function of ha. So, there is ambiguity in that choice.
The ga,b account for the fact that we if we were to compare the two guaranteed
possible paths along a composable edge, then we may have (sometimes, inevitably)
chosen our ha inconsistently. This is shown in the diagram below.

g 7→ habgh
−1
ab

g 7→ hahbg(hahb)
−1

ab
b a

Example 3.11. Consider the polyhedral complex consisting of two squares sharing
an edge, this is realised as a scwol X , shown in the following diagram.
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There is an action of G = Z/2Z on this scwol by reflecting in the line realised
by the subscwol highlighted in red. The quotient scwol Y = G\X is shown below.

In the resulting complex of groups H, the local groups of the red vertices are G and
the other local groups are trivial. All the monomorphisms are determined by these
groups and all the twisting elements are trivial.

Given any polyhedral complex, we could construct such an example as above.
In this context, the geometric requirements on the action are as follows.

(1) The action respects the cell structure and acts by homeomorphisms when
restricted to cells.

(2) If an open cell is fixed setwise, then it is fixed pointwise.

Given these two conditions, the quotient scwol realises the quotient polyhedral
complex (which is again a polyhedral complex, thanks to condition (2)). The
stabiliser of a cell is automatically a subgroup of the stabilisers of each of its faces,
and we get a complex of groups in this way.

We now define the appropriate notion of a morphism of complexes of groups.

Definition 3.12. Let X and X ′ be two scwols, and let G = (Gσ, ϕa, ga,b) and
G′ = (G′

σ, ϕ
′
a, g

′
a,b) be two complexes of groups over X and X ′ respectively. Neither

of these complexes of groups are necessarily associated to a group action. Given a
possibly degenerate morphism of scwols f : X → X ′, a morphism of complexes of
groups over f is some ψ : G → G′ which consists of the following data:

(1) A homomorphism ψσ : Gσ → G′
f(σ) for all σ ∈ V (X ).

(2) An element θa ∈ G′
t(f(a)) for all a ∈ E(X ) such that:

(i) Ad(θa)ϕ
′
f(a)ψi(a) = ψt(a)ϕa for all a ∈ E(X ).

(ii) ψt(a)(ga,b) = θaϕf(a)(θb)gf(a),f(b)θ
−1
ab for all (b, a) ∈ E(2)(X ).

If f is degenerate, and f(a) is an identity morphism for some edge a, then ϕ′f(a) is

the identity homomorphism by convention. We say ϕ over f is an isomorphism if
f is an isomorphism of scwols and each ϕσ is an isomorphism.

Condition (i) says that the square of an edge a commutes up to conjugation by
a chosen element θa, i.e. in the following diagram, ψτϕa = Ad(θa)ϕ

′
f(a)ψσ.

Gσ Gτ

G′
f(σ) G′

f(τ)

ψσ

ϕa

ψτ

ϕ′
f(a)

(1)
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To understand condition (i), we should bear in mind the discussion following
Definition 3.10. We only require squares like (1) to commute up to some conjugation
because when defining our homomorphisms ϕa in Definition 3.10, there was an
ambiguity up to such a conjugation, which could only be resolved by an arbitrary
choice.

Condition (ii) says that, bearing in mind how squares like (1) commute, in the
following diagram, we should have ϕ′f(ab)ψσ = ϕ′f(a)f(b)ψσ.

Gσ Gτ Gν

G′
f(σ) G′

f(τ) G′
f(ν)

ψσ

ϕb

ϕab

ψτ

ϕa

ψν

ϕ′
f(a)f(b)

ϕ′
f(ab)

ϕ′
f(b) ϕ′

f(a)

(2)

We will go through the computation that shows this. If we apply condition (i)
to the composition ψνϕab, we get ψνϕab = Ad(θab)ϕ

′
f(ab)ψσ. Since G is a complex

of groups, we have Ad(ga,b)ϕab = ϕaϕb. Putting these together, we get

Ad(ψν(ga,b)θab)ϕ
′
f(ab)ψσ = Ad(ψν(ga,b))ψνϕab

= ψν Ad(ga,b)ϕa,b

= ψνϕaϕb.

Then, applying the condition (i) twice

ψνϕaϕb = Ad(θa)ϕ
′
f(a)ψτϕb = Ad(θa)ϕ

′
f(a) Ad(θb)ϕ

′
f(b)ψσ

= Ad(θaϕ
′
f(a)(θb))ϕ

′
f(a)ϕ

′
f(b)ψσ.

Then, since G′ is a complex of groups, we have Ad(g′f(a),f(b))ϕ
′
f(a)f(b) = ϕ′f(b)ϕ

′
f(a).

All together, we have

Ad(ψν(ga,b)θab)ϕ
′
f(ab)ψσ = Ad(θaϕ

′
f(a)(θb)g

′
f(a),f(b))ϕ

′
f(a)f(b)ψσ.

Thus, condition (ii) guarantees ψν(ga,b)θab = θaϕ
′
f(a)(θb)g

′
f(a),f(b) and thus ϕ′f(ab)ψσ =

ϕ′f(a)f(b)ψσ. Condition (ii) ensures that ψνϕab unambiguously commutes in the fol-

lowing diagram, thus we only need to define one θab.

Gσ Gν

G′
f(σ) G′

f(ν)

ψσ

ϕab

ψν

ϕ′
f(a)f(b)

ϕ′
f(ab)

Definition 3.13. A complex of groups is called developable if it is isomorphic to
a complex of groups emerging from an action of a group on a scwol, as in Defini-
tion 3.8.
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Remark 3.14. Suppose we have a complex of groups G = (Gσ, ϕa, ga,b), which
emerges from a group G acting on a scwol. There is a natural morphism from G to
G which is injective on the local groups Gσ.

We also emphasise the following important morphism of complexes of groups. A
group G can be realised as a complex of groups over the trivial scwol, consisting of
one vertex and zero (non-identity) edges. In this way, the following definition is a
specific case of Definition 3.12.

Definition 3.15. A morphism from a complex of groups G = (Gσ, ϕa, ga,b) over
the scwol X to a group G consists of the following data.

(1) A homomorphism ψσ : Gσ → G for all σ ∈ V (X ).
(2) An element θa ∈ G for all a ∈ E(X ) such that:

(i) ψt(a)ϕa = Ad(θa)ψi(a)
(ii) ψt(a)(ga,b) = θaθbθ

−1
ab .

Now, we explore a way in complexes of groups diverge significantly from graphs
of groups. A graph of groups always arises from an action of a group on a tree,
however, this is not the case here.

Theorem 3.16 ([BH11, Chapter 3.C, Corollary 2.15]). A complex of groups G over
the scwol X , is developable if and only if there exists a group G and a morphism
ψ : G → G where each ψσ : Gσ → G is injective.

Proof. One direction of the proof is given by Remark 3.14. We prove the other
direction constructively. Given any such morphism, we can construct a scwol,
which we will denote Yψ. There will be a natural G action on Yψ, where G\Yψ is
canonically isomorphic to X .

The vertices and edges of Yψ are associated to cosets of the local groups under
the morphism.

V (Yψ) = {(gψσ(Gσ), σ) | σ ∈ V (X ), gψσ(Gσ) ∈ G/ψσ(Gσ)}
E(Yψ) = {(gψi(a)(Gi(a)), a) | a ∈ E(X ), gψi(a)(Gi(a)) ∈ G/ψi(a)(Gi(a))}

with initial and terminal vertices

i(gψi(a)(Gi(a)), a) = (gψi(a)(Gi(a)), i(a))

t(gψi(a)(Gi(a)), a) = (gθ−1
a ψt(a)(Gt(a)), t(a)).

Composition is defined as

(gψi(a)(Gi(a)), a)(hψi(b)(Gi(b)), b) = (hψi(b)(Gi(b)), ab)

where g, h ∈ G and i(hψi(b)(Gi(b)), b) = t(gψi(a)(Gi(a)), a). There are some checks
which we will omit, and refer the reader to reference for this theorem for these
in full. In particular, we should check that t assigning the terminal vertex is a
well-defined function, and that Yψ is well-defined as a scwol.

There is a natural action of G on Yψ, where
h · (gψi(a)(Gi(a)), a) = (hgψi(a)(Gi(a)), a)

and similarly with vertices. Since this action acts transitively on the cosets, we get
a natural isomorphism λ between G\Yψ and X . Let p : Yψ → X be the projection
Yψ → G\Yψ composed with λ. When constructing the complex of groups associated
to this action, we need to make choices of representatives with respect to p, i.e. we
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need to choose a section s of p. We make the natural choice of s(σ) = (1σψσ(Gσ), σ)
for each σ ∈ V (X ). Then, the unique ã ∈ Y such that p(ã) = σ and i(ã) = s(σ)
is the obvious one, ã = (1σψσ(Gσ), a). For our choice of ha, we require ha · t(ã) =
s(t(a)), so we need haθ

−1
a ψσ(Gσ) = 1σψσ(Gσ). The natural choice is ha = θa.

Given these choices, we have a complex of groups Gψ = (G′
σ, ϕ

′
a, g

′
a,b) over G\Yψ.

The local groups G′
σ are ψσ(Gσ), the edge homomorphisms ϕ′a are the restriction

of Ad(θa) to ψi(a)(Gi(a)), and the twisting elements satisfy g′a,b = θaθbθ
−1
ab . If each

ψσ is injective, then there is a natural map ω : G′ → G over λ, that identifies each
ψσ(Gσ) with Gσ. Since ψ was a morphism of complexes of groups, the following
square commutes for all edges a.

Gσ Gτ

ψσ(Gσ) ψτ (Gτ )

ψσ

ϕa

ψτ

Ad(θa)

Thus, ω does define a morphism of complexes of groups, and is thus an isomorphism.
□

3.3. Algebraic topology associated to complexes of groups. We have al-
ready discussed how to create spaces from scwols. We now work to define a space
related to a complex of groups. The fundamental group of this space can be com-
puted directly from the algebraic structure of the complex of groups and is an
important algebraic invariant of a complex of groups.

Given a scwol X , homotopy in |X | is well modelled by the category structure
in X . Let E±(X ) ⊃ E(X ) denote oriented edges in |X |. The a ∈ E(X ) are the
edges oriented in the same way as the corresponding map in X . These are the
positively oriented edges. To each a ∈ E(X ), we denote the edge oriented in the
opposite orientation by a ∈ E±(X ) \ E(X ). So i(a) = t(a) and t(a) = i(a). These
are the negatively oriented edges. As with Definition 2.15, we consider e 7→ e as a
map E±(X ) → E±(X ) which acts in the obvious way, where a = a etc. Unlike in
Definition 2.15, the negatively oriented edges do not really exist in our scwol. This
notation is just used to denote a path along an edge in the geometric realisation
which goes in the opposite direction to the corresponding map.

Definition 3.17. An edge path from σ to τ in |X | is a tuple (e1, . . . , en) ∈
(E±(X ))

n
such that i(e1) = σ, t(en) = τ and t(ei) = i(ei+1) for all 1 ≤ i < n.

We can define homotopy of such edge paths in the following way. Given an edge
path (e1, . . . , en) ∈ (E±(X ))

n
, we may do the following replacements:

(1) Any adjacent subpath (ei, ei+1), where ei = ei+1 can be deleted.
(2) Any adjacent subpath (ei, ei+1), where ei = b and ei+1 = a are both pos-

itively oriented can be replaced by the subpath (ab), which is guaranteed
to exist. Similarly, if ei = b and ei+1 = a are both negatively oriented, we
can replace (ei, ei+1) with (ba).

A homotopy of edge paths is a sequence of such edge path replacements, and their
inverses. We can then define the fundamental group of X , π1(X , σ0), to be the
homotopy class of edge paths that start and end at σ0. This is isomorphic to the
usual π1(|X |, σ0) by [Hat01, Corollary 4.12].

We now define a category whose topology (via the geometric realisation) encodes
some of the algebra of a complex of groups.
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Definition 3.18. Given a complex of groups G over the scwol X , we define the
category CG as follows. The objects of CG are the objects (vertices) of X . The
morphisms of CG are the tuples (g, α) : i(α) → t(α), where g ∈ Gt(α) and α is
a (potentially identity) morphism in X . The composition (g, α)(h, β) exists when
t(β) = i(α) in X , and it is defined to be

(g, α)(h, β) := (gϕα(h)gα,β , αβ).

For this definition, we take ϕα to be IdGσ
if α = Idσ, and gα,β to be the identity in

Gt(α) if either of α or β are identity morphisms.

Compatibility condition (2) in Definition 3.9 guarantees associativity of this com-
position in CG.

We can apply the construction of the geometric realisation of a scwol in Defini-
tion 3.3 to any category C. The only modification is that we consider non-identity
endomorphisms in our composable tuples (which did not exist in the case of scwols).
As with Definition 3.3, given a category C, we denote this geometric realisation |C |.

Definition 3.19. Given a complex of groups G, we define the classifying space of
G to be |CG|.

For example, if we take G to be the complex of groups of a group G over the
trivial scwol, then |CG| is the classifying space for G as defined in [Hat01, Example
1B.7]. In particular, the 2-skeleton of |CG| is the presentation complex of G with
generating set G.

Definition 3.20. Given a complex of groups G = (Gσ, ϕa, ga,b) over the scwol X ,
let ∆ denote the free product over all the groups in the following set.

{FE±(X )} ⊔
⊔

σ∈V (X )

{Gσ}.

Where FE±(X ) is the free group with basis E±(X ).
We then define the universal group FG associated to G to be the quotient of ∆

subject to the relations R, where

R =


a−1 = a

ab(ab) = ga,b
ϕa(g) = aga−1


for all a, b, ab ∈ E(X ) and g ∈ Gσ for which the relevant expression is well-defined.

There is a natural morphism i : G → FG where g ∈ Gσ is mapped to the cor-
responding generator in FG, and a ∈ E(X ) is sent to a. The relations in FG are
exactly the ones needed to make i a morphism in the sense of Definition 3.15. The
group FG is universal in that these relations are minimal. Specifically, given any
morphism ω : G → G, there is a unique homomorphism Fω : FG → G such that
fω ◦ i = ω [BH11, Chapter 3.C, Section 3.2].

Consider edge paths in the category CG, like in Definition 3.17, except we now
have non-identity endomorphisms. As we saw in the case of scwols, homotopy
is encoded by map composition, exactly the same is true in this case. For the
following examples, let the complex of groups G be simple, consist of two vertices
and correspond to the following inclusion

Gσ ↪→ Gτ .
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The edge paths will be in the category CG, and we consider homotopies in |CG|.

Example 3.21. Let e1 and e2 be positively oriented edges corresponding to the
maps g, h ∈ Gσ. These are loops, so i(e1) = i(e2) = t(e1) = t(e2) = σ. There is a
homotopy from the path (e1, e2) to (e3) where e3 is the loop starting and ending
at σ which corresponds to hg ∈ Gσ.

Example 3.22. Let e1 be the positively oriented edge with i(e1) = σ and t(e1) = τ ,
which corresponds to g ∈ Gτ . Let e2 be the positively oriented edge with i(e2) = σ
and t(e2) = τ , which corresponds to the identity element 1τ ∈ Gτ . Let e3 be
the positively oriented loop at τ which corresponds to g ∈ Gτ . The path (e1) is
homotopic to the path (e2, e3). Shown in the following diagram.

σ

τ

1τ

g 1τ

g

≃
σ

τ

1τ

g 1τ

g

From the previous example, we see that any edge path in |CG| is homotopic to a
path which moves between vertices via the relevant identity element, and possibly
completes some loop at each vertex. Thus, to record an edge path in |CG| up to
homotopy, we should record exactly this information.

Definition 3.23. Let G be some complex of groups over the scwol X . A G path p
from σ to τ is a tuple of the following form,

p = (g0, e1, g1, . . . , en, gn)

where each ei ∈ E±(X ), i(e1) = σ, t(en) = τ , g0 ∈ Gσ, and each gj ∈ Gt(ej) for
j ̸= 0. If σ = τ , then this is a G loop at σ.

If p = (g0, e1, . . . , en, gn) is a path from σ to τ and p′ = (g′0, e
′
1, . . . , e

′
n, g

′
n) is a

path from τ to ν, then the concatenation p ∗ q is defined to be

(g0, e1, . . . , en, gng
′
0, e1, . . . , e

′
n, g

′
n).

There is a projection π from G paths to FG that acts as

(g0, e1, . . . , en, gn) 7→ g0e1 · · · engn.

Two G paths p and q are defined to be homotopic if π(p) = π(q) in FG. The
fundamental group π1(G, σ0) of G at σ0 is defined to be G loops at σ0 up to ho-
motopy, with concatenation as the group operation. In Haefliger’s work, he defines
paths and homotopy in G in this purely algebraic way, using FG. The fact this
also encodes the usual notion of homotopy in the classifying space for G, is briefly
mentioned in [Hae91, Section 3.1.a]. Hopefully by the preceding discussion, the
reason for this correspondence is clear.

Theorem 3.24 ([Hae91, Proposition 3.2]). Given a complex of groups G over a
connected scwol X , let T be a spanning tree of X . The fundamental group π1(G, σ0)
is isomorphic to FG quotiented by the relations RT where

RT = {a = 1 | a is an edge in T}.
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Compare this with Definition 2.23. For complex of groups G over a connected
scwol X , there is a projection ρ : FG → π1(G, σ0). By the above theorem, ρ is
injective on the local groups Gσ ≤ FG. Thus, we can make Theorem 3.16 more
specific. Let i : Gσ → FG be the inclusion of local groups as discussed proceeding
Definition 3.20.

Theorem 3.25 ([BH11, Chapter 3.C, Proposition 3.9]). A complex of groups G
over a connected scwol X is developable if and only if the map i : Gσ → FG, or
equivalently ρ ◦ i : Gσ → π1(G, σ0) is injective on each local group Gσ.

With the definition of the fundamental group of a complex of groups, we have
generalised many aspects in the theory of graphs of groups. In this context, we can
also prove some important results in that theory, such as the developability of any
graph of groups, realised as a 1-dimensional complex of groups.

There are results, discussed in [Hae91, Section 6], that relate non-positive cur-
vature properties on the geometric realisation of the scwol to the developability
of any complex of groups over that scwol. In [CD95], the authors use complexes
of groups to define what they call modified Deligne complex and modified Coxeter
complex, where some of the tools developed here, especially the construction of the
classifying space, play a vital role.

Overall, complexes of groups provide a very useful context in which to understand
and leverage group actions on complexes.

4. Ends of groups

We now reach the topic of ends of groups. In this chapter, we explore the rela-
tionship between the number of ends of a finitely generated group and the algebraic
structure of these groups as amalgams and HNN-extensions. An important result
in this area is Stallings’ Structure Theorem [Sta71, p. 4], which classifies finitely
generated groups with more than one end:

Theorem 4.1 (Stallings’ Structure Theorem). A finitely generated group G has
more than one end if and only if:

(1) G is virtually infinite cyclic, i.e. contains an infinite cyclic subgroup of
finite index, or

(2) G can be written as a non-trivial free product over a finite subgroup, or
(3) G can be written as a HNN-extension over a finite subgroup.

The main aim of this section is to explore why Stallings’ Theorem is true, which
we do in two stages. First, we introduce some theory necessary to prove the back-
ward implication, which is the easier of the two steps. We then follow the method of
Krön’s paper [Krö10] to suggest towards the proof of the longer forward implication.

4.1. Preliminaries.

4.1.1. Ends of groups and topological spaces. Throughout we assume all groups are
finitely generated. In this preliminary section, we follow Bridson and Haefliger
[BH11, p. 144–148] to introduce ends of a group and summarise some of their
properties.

Loosely speaking, ends are objects which describe the connected components
of a topological space at infinity. In the context of ends of a group, these con-
nected components arise from a Cayley graph of the group under a choice of finite
generating set.
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aa−1

b

b−1

Figure 8. A Cayley graph for F2 with generating set {a, b, a−1, b−1}, where
the ‘points at infinity’ are visualised in blue.

Before defining ends of a group, we introduce some necessary terminology.

Definition 4.2. Let X,Y be topological spaces. A map f : X → Y is proper if for
any compact set K ⊂ Y , the pre-image f−1(K) ⊂ X is compact.

Definition 4.3. A ray in a topological space X is a proper continuous map r :
[0,∞) → X.

Example 4.4. A useful example is to consider what rays in X = R2 look like.
Here, K ⊂ R2 compact is equivalent to K closed and bounded, and all pre-

images of K are of the form V ∩ [0,∞), where V is closed in R. Rays therefore
cannot be “trapped” inside a bounded region in the plane for all time t ∈ [0,∞),
otherwise we could take this region to be our compact set K, and the pre-image of
K under f : [0,∞) → R would fail to be compact.

This idea holds for all topological spaces X, and therefore we can construct a
characterisation of rays by a “point at infinity”. We formalise this in order to define
ends. To do this, we use a notion of convergence of rays in X.

Definition 4.5. Let X be a topological space. If r1, r2 : [0,∞) → C are rays, then
r1 and r2 are said to converge if for every compact K ⊂ X there exists N ∈ N such
that r1[N,∞) and r2[N,∞) are contained in the same path component of X \K.

Proposition 4.6. Let X be a topological space, and R be the set of rays in X.
Then convergence of rays in X is an equivalence relation on the set of rays R.

Proof. Reflexivity and symmetry are straightforward. Transitivity follows by the
fact that containment of sets is transitive. □

After showing that convergence in the same direction defines an equivalence
relation on the set of rays, we can define ends to be the equivalence classes under
this relation.

Definition 4.7. An end of X is an equivalence class under the relation of conver-
gence of rays. The set of ends of X is written as Ends(X).



GROUPS ACTING ON TREES 31

Remark 4.8. There are alternative definitions of ends, in particular there is a defi-
nition in terms of taking a nested sequence of connected components out to infinity.
This is constructed by taking the a sequence of balls of increasing radius around a
chosen basepoint, and selecting a connected component in the complement of each
ball, if one exists (see Meier’s book, [Mei08, p. 208]). From this we can see more
clearly how to understand ends as connected components. For locally finite graphs
(graphs in which all vertices have finite degree), it turns out that all definitions of
ends are equivalent.

Definition 4.9. The set of ends of a group G with a finite generating set S is
defined by the set of ends of the corresponding Cayley graph, where R is the set of
rays in Cay(G,S):

Ends((G,S)) := Ends(Cay(G,S)) = R/ ∼ .

Here r1 ∼ r2 if r1 and r2 converge in Cay(G,S) in the sense of Definition 4.5.

Remark 4.10. Moreover, Ends(X) is a topological space, where a subset B ⊂
Ends(X) is closed if all convergent sequences of ends inX have a limit point which is
also in Ends(X). For a formal definition of convergence of ends, see [BH11, p. 144].

Definition 4.11. The number of ends of a topological space X is

e(X) := |Ends(X)|.

The number of ends may be infinite, in which case we write e(X) = ∞. The
same notation extends to the number of ends of a finitely generated group (where
S is a finite generating set) which we denote by e((G,S)). A very useful result is
that the number of ends is invariant under quasi-isometry, which is one of the main
reasons that ends are an interesting object to study.

Theorem 4.12 (Number of ends is a QI invariant). [BH11, p. 145] Let G1, G2 be
groups with finite generating sets S1, S2 respectively. If there exists a quasi-isometry
f : (G1, S1) → (G2, S2), then e((G1, S1)) = e((G2, S2)).

Corollary 4.13. The number of ends of a group is independent of the choice of
finite generating set.

We can therefore denote the number of ends of a group by e(G).

Example 4.14. Some examples of the number of ends of groups are as follows.
These can all be visualised by their Cayley graphs, for an arbitrary choice of finite
generating set. (We can take the most obvious choice of finite generating set for
each, for example S = {−1, 1} for G = Z.)

• e(Z/nZ) = 0 for all n ∈ N
• e(Dn) = 0 for all n ∈ N
• e(Z2) = 1
• e(Z) = 2

• e(Z/2Z ∗ Z/2Z) = e(D∞) = 2
• e(F2) = ∞
• e(Z2 ∗ Z) = ∞
• e(PSL(2,Z)) = ∞

In fact, the options for the number of ends of a group in the examples above are
the only possibilities.

Theorem 4.15 (Freudenthal-Hopf Theorem). [BH11, p. 146–147] Every finitely
generated group has either zero, one, two, or infinitely many ends.
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Corollary 4.16. Finite groups have no ends. Equivalently, by Theorem 4.15, if
G is an infinite finitely generated group, G has either one, two or infinitely many
ends.

Proof. All Cayley graphs of a finite group G with respect to a finite generating set
S are finite, and therefore bounded. Take the compact set K ∈ X = Cay(G,S) to
be the whole set X. Then X \K is empty and thus there are no convergent rays
in X. Hence, there are no ends. □

4.1.2. Splittings of groups. Now that we have introduced some background on ends,
we focus on proving the backward implication of our main result, Stallings’ Struc-
ture Theorem (Theorem 4.1). In other words, if a infinite finitely generated group
splits, then it has more than one end. Intuitively, splittings are ways to decompose
or “factorise” the group, and we introduce the two main ways of doing so: through
amalgams and HNN-extensions.

Definition 4.17. Let G,H be groups and A1 < G, A2 < H be isomorphic proper
subgroups. The amalgamated product with isomorphism ϕ : A1 → A2 is

G ∗A H = ⟨G ∗H | a = ϕ(a), a ∈ A1⟩.
Groups that can be written as amalgamated free products are called amalgams.

For the definition of a HNN-extension, we recall Definition 2.6.

Definition 4.18. Let G be a group, ϕ : A1 → A2 an isomorphism between two
proper subgroups A1,A2 of G. An HNN extension of G associated to that data is the
quotient of G∗⟨t⟩ by the smallest normal subgroup containing {a−1tϕ(a)t−1|a ∈ A1}.
Thus, we can represent that extension by a relative presentation

G∗A1

ϕ = ⟨G, t | t−1at = ϕ(a),∀a ∈ A1⟩.
The generator t is called the stable letter.

Definition 4.19. A normal form for G ∗A H is a sequence (x1, y1, . . . , xn, yn, a),
where xi is a coset representative of a non-trivial left coset in G/A, and yi is a
coset representative of a non-trivial left coset in H/A.

Lemma 4.20. Let G ∗A H be an amalgamated free product of groups, A ≤ G,
A ≤ H. Every element in G ∗A H can be written uniquely in normal form, in the
sense of Definition 4.19.

This property also applies to HNN-extensions, with the normal form defined as
follows.

Definition 4.21. A normal form for G∗A1

ϕ is a sequence (x0, t
ϵ0 , x1, t

ϵ1 , . . . , xn, t
ϵn , g)

where g is an arbitrary element of G, ϵi ∈ {−1, 1}, and the following two condi-
tions hold. First, we require this sequence to be reduced, i.e. there is no consecutive
subsequence of the form t−ϵ, 1, tϵ. Second, if ϵi = 1 then xi ∈ B, and if ϵi = −1
then xi ∈ A.

The fact that HNN-extensions can be expressed uniquely in this normal forms
is known as Britton’s lemma. For a proof of this result, as well as the analogous
result for amalgams, the interested reader may refer to [Krö10, p.7–8]. Using the
above definitions, now we can define more formally what it means for a group to
split.
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Definition 4.22. A group G is said to split over a subgroup H if G is a non-trivial
free product with amalgamation over H or G is a HNN-extension of a group over
H.

Aside 4.23. An interesting diversion is the topic of accessibility. One may ask
about the extent to which we can repeatedly split a finitely generated group, and
if every finitely generated group has a factorisation in which the factors are either
finite (zero ended) or one-ended. A finitely generated group with this property is
said to be accessible. The result was shown to be negative in 1993, by a coun-
terexample constructed in [Dun93]. It appears that in the last twenty years or so,
accessibility has been largely superceded by JSJ decomposition, which is discussed
in Section 2.3.2.

Using Bass–Serre theory, we can interpret what it means for a group to split in
terms of actions of groups on trees. This is discussed further in Section 2 where
the Bass-Serre tree is defined.

Theorem 4.24 ([Ser80, Chapter 4.1, Theorem 7]). Let G act without edge inversion
and transitively on an infinite tree X (the Bass–Serre tree). Then G splits over the
stabiliser of an edge of X. Specifically,

(i) If the fundamental domain G \X is a segment, then G splits as a non-trivial
free product with amalgamation over the stabiliser of an edge of G \X.

(ii) If G \ X is a loop, then G splits as HNN-extension over the stabiliser of an
edge of G \ X. The stable letter maps the origin vertex of that edge to the
terminal vertex.

4.2. Splittings of groups. Using our definitions of amalgams, HNN-extensions
and their normal forms, we briefly return to our objective of proving Stallings’
structure theorem. In this section, we show that if G is an infinite finitely generated
group which splits over a finite subgroup, then G has more than one end.

In the notation of Theorem 4.1, we show (2) and (3) implies multiple-endedness.
We assume condition (1) — for a proof of this, one can refer to [Mei08, Chapter
11.6, Corollary 11.34]. First, we give a definition for rays in a graph.

Definition 4.25. In a graph Γ, a ray is an infinite sequence of vertices such that
each consecutive pair are endpoints of an edge in E(Γ) and each vertex in V (Γ)
appears at most once in the sequence. In particular, a ray contains neither loops
nor backtracking segments.

Caveat 4.26. This is not exactly equivalent to the definition of rays in topological
spaces that was given in Definition 4.3, however this leads to an equivalent notion
of ends in graphs. (See Remark 4.8 for more on different definitions of ends.)

The proposition below gives a criterion to determine whether an infinite finitely
generated group is one-ended.

Proposition 4.27. Let G be an infinite finitely generated group and let S be a
finite generating set. The Cayley graph of G with respect to S has more than one
end if and only if there is a subset V of G such that: (a) V and G \ V are infinite,
and (b) for all g ∈ G, V g \ V is finite.
Proof idea:



34 SEAN O’BRIEN, ALICJA PIETRZAK, LORNA RICHARDSON, AND TALIA SHLOMOVICH

• Since Cay(G,S) is infinite, e(G) > 0. Therefore, it suffices to show that
the existence of a subset V ⊆ G which satisfies the conditions (a) and (b)
is equivalent to e(G) ̸= 1.

• For the forward direction, we choose the subset V ⊆ G to consist of an
equivalence class of rays from e. This is the vertex set of these equivalent
rays as a subset of all the vertices in the Cayley graph.

• The backward direction is harder but uses a similar idea. It suffices to show
that if V is such a subset, then V must be an equivalence class of rays. By
(a), e(G) ̸= 1, since otherwise G \ V would be empty and therefore finite.

□

Theorem 4.28. Let G be an infinite finitely generated group which splits over some
finite subgroup H. Then G has more than one end.

Proof. We have two cases, either G splits with as an amalgamated free product
over H, or G is a HNN-extension of a group over H. We prove the result where G
is an amalgam, since the HNN case is very similar.

Let G be an amalgamated product over H, i.e. there exists A,B such that
G = A ∗H B. Let S be a finite generating set, where each of the generators is in
A or B. We consider two sets of vertices in Cay(G,S). Firstly, the set of vertices
V1 whose normal form starts with a non-trivial left coset representative of A/H.
And secondly, the set of vertices V2 whose normal form starts with a non-trivial
left coset representative of B/H.

Using the fact that every element of G can be expressed uniquely as a normal
form, these two sets are disjoint, and the elements of H lie outside of both V1 and
V2. Note that V1, V2 are infinite and H is finite, so taking V = V1 (or equivalently,
V = V2) satisfies the conditions of Proposition 4.27. Hence, Cay(G,S) has more
than one end. □

4.3. Cutting up graphs.

4.3.1. Cuts and their properties. Given a finitely generated group with multiple
ends, we would now like to construct a decomposition of this group as a splitting.
The method of Krön in [Krö10] involves “cutting up” the Cayley graphs for these
groups in a certain way. Throughout we take Γ to be a simple, undirected graph,
with vertex set V (Γ) and edge set E(Γ).

Definition 4.29. Let C,D ⊂ V (Γ). We denote the set of edges with one vertex in
C and the other vertex in D by the set ∂(C,D). The boundary of a subset C is
defined by the set ∂C = ∂(C,Cc).

Recall that in a graph Γ, a ray is an infinite sequence of vertices such that each
consecutive pair are endpoints of an edge in E(Γ) and each vertex in V (Γ) appears
at most once in the sequence.

Definition 4.30. Two rays are said to be separated by a set of edges if this set of
edges separates a pair of infinite subpaths, one from each of the rays. We call two
rays equivalent if they cannot be separated by a finite set of edges.

Ends are then defined similarly to Definition 4.7, taking the equivalence relation
to be equivalence as defined above.
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Definition 4.31. An end of X is an equivalence class under the relation of equiv-
alence of rays.

Definition 4.32. A cut is a set of vertices C with finite edge boundary such that
C and Cc are both connected as subgraphs of Γ and contain (the vertices of) a ray.

Proposition 4.33. If a cut contains a ray R, then it contains all rays which are
equivalent to R.

Proof. Let C be a cut containing R. Suppose R′ is a ray equivalent to R such
that R′ is not contained in C. Since R and R′ are equivalent, there is no finite
set of edges which separates R and R′. For a contradiction, it suffices to show the
existence of such a set. For this we take the edge boundary ∂C — it is finite (since
C is a cut) and separates R and R′ (since R′ is not contained in C). □

Definition 4.34. A cut C is minimal if |∂C| = infC′⊂V (Γ) |∂C ′|, or in other words,
the cardinality of the edge boundary ∂C is minimal over all cuts.

Lemma 4.35. If Γ is connected and has more than one end then there is a minimal
cut.

Partial proof. If Γ has a single end, then by Proposition 4.33, Γ does not admit any
cut. Suppose otherwise, and that Γ admits a cut C. Then C would contain a ray
and by the proposition all equivalent rays. In this case, all rays are equivalent, and
hence it is not possible that both C and Cc contain a ray.

Next, suppose Γ has more than one end. It suffices to show that there exists
a cut, since if there exists at least one cut, then there is a minimal cut by well-
ordering. As Γ has more than one end, then there exist rays R,R′ which are not
equivalent. Let C consist of the vertex set of R. Then, C contains the ray R, and
Cc contains the ray R′. It remains to show that |∂(C)| is finite, and that C and Cc

are connected. □

Lemma 4.36. Let C and D be minimal cuts. If C ∩D and Cc ∩Dc are cuts then
they are minimal cuts.

Proof. Let κ > 0 be the cardinality of a minimal cut. As C,D are minimal by
assumption, κ = |∂C| = |∂D|. We aim to show κ = |∂(C ∩ D)| = |∂(Cc ∩ Dc)|.
The diagram below relates the edge boundaries of these four sets (which we call
corners) and can be used to make the following calculation.

Let

a = |∂(C ∩D,Cc ∩D)|, d = |∂(Cc ∩D,Cc ∩Dc)|,
b = |∂(C ∩D,C ∩Dc)|, e = |∂(C ∩D,Cc ∩Dc)|,
c = |∂(C ∩Dc, Cc ∩Dc)|, f = |∂(C ∩Dc, Cc ∩D)|.

Then,

κ = |∂(C)|
= |∂(C,Cc)|
= |∂(C,Cc ∩D)|+ |∂(C,Cc ∩Dc)|
= |∂(C ∩D,Cc ∩D)|+ |∂(C ∩Dc, Cc ∩D)|
+ |∂(C ∩D,Cc ∩Dc)|+ |∂(C ∩Dc, Cc ∩Dc)|

= a+ f + e+ c. (1)
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C ∩D Cc ∩D

Cc ∩DcC ∩Dc
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e

b d
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Figure 9. The four cuts and their all possible edge boundaries between them.
Diagram taken from [Kro90, p. 4].

This corresponds exactly to the edges in the diagram emanating from C ∩D and
C ∩Dc. Similarly,

κ = |∂(D)| = b+ f + e+ d. (2)

By (1) and (2),

2κ = a+ b+ c+ d+ 2e+ 2f. (3)

The sets C ∩ D and Cc ∩ Dc contain an end, so ∂(C ∩ D) = a + e + b ≥ κ and
∂(Cc ∩Dc) = c + e + d ≥ κ. It follows that the sum a + b + c + d + 2e ≥ 2κ. By
comparison with (3), we have that f = 0. Finally,

κ = a+ e+ b = c+ e+ d.

Therefore, ∂(C ∩D) and ∂(Cc ∩Dc) are minimal as required.

□

4.3.2. Building structure trees. Our goal in this section is to shed light on how to
construct structure trees, as in [Krö10] and [DW13]. In particular, we are interested
in the action of finitely generated groups with more than one end on structure trees
of their Cayley graphs, and how this ties in with our aim of proving Stallings’
theorem. As the construction is very detailed, we focus instead on providing some
intuition without going into detail about the proofs.

To start, note that if Γ is the Cayley graph of a group G with respect to some
finite generating set S ⊆ G, then Γ is connected and the action of G on Γ is
transitive (there is only one orbit of vertices).

Definition 4.37. Cuts of vertices C,D ⊂ V (Γ) are nested if one of the following
conditions hold:

(1) C ⊂ D
(2) D ⊂ C
(3) C ∩D = ∅
(4) C ∪D = V (Γ).

Alternatively, cuts are nested if there is one empty corner. Cuts C,D are said to
be non-nested if they are not nested.
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Structure trees are trees which are constructed from structure cuts, which are
cuts C such that for any automorphism g ∈ Aut(Γ), C and g(C) are nested. Let
C := {g(C) | g ∈ Aut(Γ)} be this collection of cuts. If G acts on its Cayley graph
Γ, and if C is a G-invariant set of nested cuts, then the action of G on Γ induces an
action of G on a subset of the elements of C, which are called C-blocks. From these
C-blocks, we can construct a tree — in which C-blocks form the vertices and edges
are given by intersecting pairs of C-blocks. The resulting tree is denoted T (C) and
is called the structure tree. If the action is transitive on Γ, then it is also transitive
on T (C).

Now that we have a transitive action on a infinite tree, Krön uses Bass-Serre
theory to deduce that the group G splits over the stabiliser of an edge. As the
action of a tree on its Cayley graph is free, there is some work to be done to show
that the edge stabilisers of T (C) are finite. In summary, this points to the following
theorem:

Theorem 4.38 (Opposite direction to Theorem 4.28). Let G be an infinite finitely
generated group with more than one end. Then, G splits over some finite subgroup
H.

Remark 4.39. There are many further details which have been omitted from the
explanation above: for example, how do we define C-blocks and how exactly does
the action of G on its Cayley graph induce an action on these blocks? We will not
address these in full, but instead will draw upon an example taken from [DW13,
p. 14].

Figure 10. A Cayley graph for PSL(2,Z) with generating set {a, b, a−1, b−1}.
The cuts are shown by dotted lines, and blue vertices form the
block corresponding to this set of cuts.

Example 4.40 (Blocks in a Cayley graph for PSL(2,Z)). Here, we use without proof
that

PSL(2,Z) ∼= Z/2Z ∗ Z/3Z = ⟨a, b | a2 = b3 = 1⟩.
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Let the Cayley graph of PSL(2,Z) generated by a, b and their inverses be called
Γ. Consider the three cuts denoted by the dotted lines in Figure 10. The vertices
in each cut lie in each of the three connected components which extend outwards
toward infinity from each of the three dotted lines respectively. These three cuts
form a set C, and the block relative to this C is given by the blue vertices.

4.4. Links to Bass–Serre theory and further questions.

4.4.1. Generalisations. Stallings’ structure theorem in the language of Bass–Serre
theory gives the following useful corollary.

Corollary 4.41. A finitely generated group with more than one end has a non-
trivial action on a tree with finite edge stabilisers.

Furthermore, from Stallings’ structure theorem we can derive an even stronger
classification.

Theorem 4.42 (Stalling’s Structure Theorem II). Stallings’ structure theorem
(Theorem 4.1) extends to the following classification:

• (1) corresponds to the case in which G has exactly two ends,
• (2) corresponds to the case where G has infinitely many ends and is torsion-
free, and

• (3) corresponds to the case where G has infinitely many ends and has tor-
sion.

It seems that there is no similar classification for one-ended groups. Since most
finitely generated infinite groups are not virtually Z and cannot be split over a finite
subgroup, we can take away the conclusion that most infinite finitely generated
groups are in fact one-ended.

4.4.2. Further research. There is plenty more to be explored here and we give two
possible directions for further investigation.

Q1. “If most finitely generated groups are one-ended, what are some other ex-
amples other than Z2?”

In particular, a large class of hyperbolic groups are one-ended:

Theorem 4.43. [Swa96] A hyperbolic group is one-ended if its Gromov boundary
is a non-empty connected space.

Hence, a set of examples would be the surface groups π1(Σg) for g ≥ 2. One
could look into similar theorems for small cancellation, Fuschian, or right-angled
Artin groups. We return to discuss a related result in Section 5 (c.f. Theorem 5.33).

Q2. “Does there exist a notion of ends of a group for an infinitely generated
group? Do Stallings’ results generalise further in this direction?” The answer to
both of these questions is yes. The definition of such an end and the theorem below
is given in [Ono18] (originally [DD89]).

Theorem 4.44. Let G be a group. The following are equivalent:

(i) e(G) > 1.
(ii) For any non-trivial free G-module M , H1(G,M) ̸= 0.
(iii) There exists a tree on which G acts without global fixed points and finite edge

stabilisers.
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(iv) One of the following holds:
• G splits as an amalgam over a finite subgroup H,
• G splits as a HNN-extension over a finite subgroup H,
• G is countably infinite and locally finite.

(v) e(G) = 2 or e(G) = ∞.

5. Groups acting on R-Trees

In this section we will discuss a class of metric spaces called R-trees, which admit
interesting group actions. These actions arise in proofs across the field of geometric
group theory, in areas from hyperbolic groups to Culler-Vogtmann Outer Space.
We will give an introduction to these spaces and the groups which act on them,
followed by an overview of some of their applications. We also aim to highlight
different ways in which Bass–Serre theory fails for R-trees. Much of this section
follows [Bes97].

5.1. Definition and Basic Examples.

5.1.1. Note that the graphs and trees referred to in this section are simplicial
(simple and undirected), as opposed to the graphs in the sense of Serre discussed
in earlier sections.

Definition 5.1. A metric space (X, d) is an R-tree if for every pair of points
x, y ∈ X there is a unique geodesic from x to y.

The following is an immediate consequence of the definition, and is sometimes
used as an alternative characterisation:

Proposition 5.2. A metric space is an R-tree if and only if it is 0-hyperbolic.

5.1.2. We now give some simple examples of R-trees.

Example 5.3. Any simplicial tree T with the metric defined by identifying each
edge with the interval [0, 1] is an R-tree. These R-trees are sometimes referred to
as simplicial.

Example 5.4. The Euclidean plane R2 with the Paris metric is an R-tree. This is
the metric d defined by

d(x, y) = dE(x, y)

if x and y lie on the same line through the origin, and

d(x, y) = dE(x, 0) + dE(0, y)

otherwise (here dE is the Euclidean metric on R2). It can be thought of as train
lines in France which all go through Paris.

Example 5.5. We can define a similar metric on R2 to that given in Example 5.4
above by treating the x-axis together with every vertical line as our train lines.
Now the geodesic between two points must go via. the x-axis. Note that there is
no underlying simplicial graph for this R-tree, so in particular we have shown that
R-trees are slightly more general than simplicial trees with metrics.
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5.1.3. An important example of when R-trees arise is as limits of hyperbolic metric
spaces. To find a limit of spaces, we first need to define an underlying metric. This
subsection is covered in more detail in [BS94, Section 1].

Definition 5.6. An ϵ-approximation between two metric spaces X and Y is a set
R ⊆ X × Y such that:

• Every point in each of X and Y appears in some element of R, and
• If (x, y), (x′, y′) ∈ R then

|dX(x, x′)− dY (y, y
′)| < ϵ.

If there exists an ϵ-approximation between X and Y , we write X ∼ϵ Y . The
Hausdorff–Gromov distance between X and Y is defined as

DH(X,Y ) = inf{ϵ : X ∼ϵ Y }
(and is infinite if no such ϵ exists).

Theorem 5.7 ([BS94, Proposition 1.9]). Let Xi be a sequence of compact metric
spaces such that Xi → X in the Hausdorff–Gromov metric.

(1) If every Xi is a geodesic metric space then so is X,
(2) If Xi is δi-hyperbolic for each i, and δi → 0, then X is an R-tree.

The proof (given in [BS94]) is by simple hyperbolic geometry.

5.2. Group Actions. Bass–Serre Theory gives a convenient way to study groups
acting on simplicial trees; in particular Theorem 2.24 says that a group G acting
on a tree X can be viewed as the fundamental group of G\X. However, this fails
in general for R-trees. For example, let X be the R-tree described in Example 5.5,
and let G be the trivial group acting on X. Then the quotient G\X is X, which
is not a simplicial tree. [Lev94] gives a construction which aims to generalise the
theorem to R-trees. Here we instead study group actions on R-trees using other
methods.

5.2.1. Isometries of R-trees have a classification analogous to that of isometries of
hyperbolic space.

Definition 5.8. Let G be a group acting by isometries on an R-tree T . The trans-
lation length of g ∈ G is

∥g∥ = inf
x∈T

d(x, g(x)).

• If ∥g∥ = 0, then g is called elliptic,
• If ∥g∥ > 0, then g is called hyperbolic.

It is often useful to classify these isometries in terms of their invariant sets.

Definition 5.9. Let g be an isometry of an R-tree T . Its characteristic set is

Cg = {x ∈ T : d(x, g(x)) = ∥g∥}.

The proof of the following proposition follows the same argument as the outline
given in [CM87].

Proposition 5.10 ([CM87, 1.3]). Let g be an isometry of an R-tree T . Then Cg
is invariant under the action of g and is a closed, non-empty subtree of T . Also,

• if g is elliptic, then Cg is fixed by g,
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• if g is hyperbolic, then Cg is isometric to R, and is called the axis of g.
Furthermore, g acts on its axis by translation by ∥g∥.

Proof. In the elliptic case, g clearly fixes Cg. We will show later that in this case Gg
is non-empty, (i.e. g has a fixed point). Since g is an isometry, if it fixes two points
x and y ∈ T , it must also fix the unique geodesic between them, so Cg is connected.
Similarly, if it fixes every point on a geodesic it must also fix the endpoints. Hence
Cg is a closed subtree as required.

Now suppose g is hyperbolic. In particular it has no fixed points. Consider a
point x ∈ T . There is a unique arc α from x to g(x), with subarcs α ∩ g(α) and
α∩g−1(α). Let m be the midpoint of α and suppose that m ∈ α∩g(α). Then g(m)

is a point in α at distance ℓ(α)
2 from g(x), so we have g(m) = m, a contradiction to

the hyperbolicity of g. The same argument gives m /∈ α∩ g−1(α). Denote by β the
subarc of α connecting g(α) to g−1(α). Since in particular m ∈ β, we know that
β has positive length. If a point p has p ∈ β ∩ g(β), it must be an endpoint of β,
since

β ∩ g(β) ⊆ α ∩ g(α) ⊆ g(α)

and β ∩ g(α) is a single point. Similarly the only point where β meets g−1(β) is at
its other endpoint. Repeating this argument inductively shows that

C =
⋃
n∈Z

gn(β)

is an arc in T which is isometric to R. In particular this is a closed subtree, and g
acts on it by translation by ℓ(β), so it is also invariant under the action of g. To
show that C = Cg, note that any point y ∈ T has a closest point in C, denoted c.
We have d(y, c) = d(g(y), g(c)) (so g is ‘moved along’ C by the same amount as c),
which implies that

d(y, g(y)) = d(y, c) + ℓ(β) + d(g(c), g(y)) = ℓ(β) + 2d(y, C).

This means that C = Cg and ∥g∥ = ℓ(β).
Finally, since we have shown that if g has no fixed points in T then ∥g∥ > 0,

we can say that an elliptic element necessarily has a fixed point, and so Cg is also
non-empty in that case. □

5.2.2. We will mostly be concerned with non-trivial group actions:

Definition 5.11. The action of a group G on an R-tree by isometries is non-trivial
if no point in T is fixed by every element of G.

Also of interest are stable actions:

Definition 5.12. The action of a group G on an R-tree by isometries is minimal
if it has no proper G-invariant subtree.

Definition 5.13. Let G be a group acting by isometries on an R-tree T . A non-
degenerate subtree S of T (i.e. a subtree which is non-empty and not a single point)
is stable if for every non-degenerate subtree S′ ⊂ S,

Fix(S′) = Fix(S)

where Fix(U) denotes the pointwise stabiliser of U . The action of G is stable if it
is non-trivial, minimal, and every non-degenerate tree T has a stable subtree.
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5.3. Band Complexes and the Rips Machine. Actions of groups on R− trees
are usually studied through band complexes. The majority of this section follows
[Wil03].

5.3.1. We start with a series of definitions.

Definition 5.14. A band is a space B = b× I where b is a closed interval. A band
is equipped with a dual map δB which is the reflection of B in the line (b, 12 ). The
intervals b and δB(b) are called bases of B, and a subset of the form {x} × I is
called a vertical fibre. See Figure 11.

Figure 11. A band

Definition 5.15. Let Γ be a metric graph and B be a finite collection of bands. For
each base b of a band B ∈ B let fb : b → Γ be an isometry such that b is mapped
into an edge of Γ (fb(b) may be the whole edge or just part of it). A union of bands
is a space

Y = Γ ∪
⊔
B∈B

B/b ∼ fb(b).

A band is B in Y is called an annulus if fb(b) = fb ◦ δB(b). A leaf of Y is an
equivalence class of points in Y where two points are equivalent if they are in the
same vertical fibre of a band in Y . See Figure 12.

In some sources, the decomposition of a band complex Y into leaves is called a
foliation.

Definition 5.16. A measure µ on a metric space X is transverse to a measurable
subset S ⊂ X if

• There is some compact subset K of V such that 0 < µ(K) <∞, and
• µ(v + S) = 0 for all v ∈ V .

Lemma 5.17 ([Wil03, Lemma 2.4]). Let Y be a union of bands. Then there is a
measure on Y which is transverse to the leaves of the bands in Y .

Proof. Let α be a path in a band B with base b. We say α is transversal if the
projection of the image of α onto b is injective, and its image is vertical if it is
contained in a single leaf. Define a measure µ on Y as follows: If α is transverse,
set µ(α) = ℓ(α), and if the image of α is vertical, set µ(α) = 0. Now for any path
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Figure 12. A union of bands. The underlying graph (with two vertices and

one edge) is shown in bold.

α : I → V , divide I into intervals Ij such that α|Ij is either transversal or has
vertical image. Then set

µ(α) =
∑
j

α|Ij .

Then µ is clearly positive on any transversal path, but 0 on each of the leaves, as
required. □

Definition 5.18. Let Y be a union of bands over a metric graph Γ. A band
complex X is a relative CW 2-complex based on Y such that:

• The 1-cells of X are contained in Γ,
• The 2-cells meet Γ at discrete sets, and
• The 2-cells intersect the bands along vertical sets.

See Figure 13.

Figure 13. A band complex. There are two bands (unshaded), two 1-cells (in
bold), and one 2-cell (shaded).

Lemma 5.19 ([Wil03, discussion after Definition 2.7]). Let X be a band complex.
Then X admits a transverse measure.
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Proof. As in the proof of 5.17, a path α : I → X can be divided up into subpaths
Ij . Each of these subpaths is either transversal or vertical as before, or its image is
contained in the closure of X\Y . In the last case, define µ(α|Ij ) = 0. □

Let X be a band complex. The leaves of X are again defined as equivalence
classes of points, here x and y are equivalent if there is a path of measure 0 from x
to y.

Two points x̃ and ỹ in the universal cover X̃ of X are in the same leaf if there
is a path from x̃ to ỹ which projects to a path of measure 0 in X.

Definition 5.20. Let G be a finitely generated group acting on an R-tree T . A
resolution of the action is a band complex X with G as its fundamental group, and
a G-equivariant map

f : X̃ → T

such that

• The image of a leaf of X̃ is a point, and
• each base can be broken into finitely many subintervals whose lifts are em-
bedded isometrically into T by f .

Theorem 5.21 ([Wil03, Theorem 2.9]). Let G be a finitely presented group acting
on an R-tree T . Then the action has a resolution.

See [Wil03] for the proof of this. The idea is that since G is finitely presented
there is a simplicial 2-complex X with fundamental group G. A band complex
structure on X satisfying the required conditions can then be constructed.

5.3.2. In unpublished work in around 1991, Rips introduced an algorithm for deter-
mining certain properties of a group G on an R-tree from a resolving band complex
for the action. This is now known as the Rips Machine. We will give an outline of
the process, followed by some of the consequences. More detailed descriptions are
given in [Wil03] and [Bes97].

Firstly, there are six moves M0−M5 on a band complex X (based on a union
of bands Y ) which transform it into a band complex that resolves the same action
but is minimal in some sense. These are:

• (M0): Attach a 2-cell to X along a loop which is null-homotopic in X but
vertical in Y ∪X(1),

• (M1): Add an annulus B to X along a subarc of the base graph Γ, then
attach a 2-cell along a vertical fibre of B,

• (M2): Split a band B down a vertical fibre, and ‘fill in’ the gap with a
2-cell,

• (M3): Split a point not in any bases into a union of 1-cells,
• (M4): ‘Slide’ a band B along another band C such that its base moves
from one base of C to the other,

• (M5): ‘Collapse’ a band from a certain kind of subarc of a base.

See Figure 14.
The Rips Machine starts by repeatedly applying these moves to transform a

connected component of a band complex X into a minimal form. It then applies an
infinite sequence of two ‘processes’, and depending on which sequence is applied,
information about the group can be determined. The following is Theorem 5.1
in [Bes97]:
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(a) Move (M0). (b) Move (M1).

(c) Move (M2). (d) Move (M3).

(e) Move (M4). (f) Move (M5).

Figure 14. The moves in the Rips Machine. The bands are the unshaded
regions, and 2-cells are shaded.

Theorem 5.22. Rips’ theorem: Let G be a finitely generated torsion free group
acting by isometries on an R-tree T . Then applying the Rips Machine to a resolving
band complex X for the action, a band complex X ′ is obtained which can be split
into disjoint components X ′

i such that each X ′
i is of one of the following types:

• Simplicial type - Every leaf of the underlying union of bands of X ′
i is com-

pact,
• Surface type - X ′

i is a compact surface with negative Euler characteristic,
• Toral type - X ′

i is the 2-skeleton of the torus T2,
• Thin type - X ′

i is not of one of the above types.

This theorem allows us to classify finitely presented groups which act ‘nicely’ on
R-trees. Splittings of groups were defined in Section 4 (Theorem 4.22).

Theorem 5.23 ([Bes97, Theorem 6.1]). Let G be a finitely generated torsion-free
group acting non-trivially by isometries on an R-tree T . Suppose also that all arc
stabilizers are trivial. Then one of the following holds:

(1) G is the fundamental group of a 2-complex X which contains a compact
surface S of negative Euler characterisic,

(2) G is a free abelian group,
(3) G splits as a non-trivial free product. Each free factor also acts on T , and

either stabilises a point (so in particular contains only elliptic elements),
or this theorem may be applied again to the factor.

Proof. (Sketch) Start by applying the Rips Machine to a resolving band complex
for the action to get a band complex X ′.

Clearly if X ′ has a component of surface type, possibility (1) holds.
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If X ′ has a component X ′
i of toral type, either

G = π1(X
′
i) = π1(T2) = Z× Z

which is a free abelian group, or a free product decomposition can be obtained
using the boundary of X ′

i. So either possibility (2) or (3) holds.
If X ′ has a component X ′

i of thin type, it can be shown that the Rips Ma-
chine subdivides some band repeatedly into thinner and thinner bands. Some of
these bands will eventually be disjoint from any of the 2-cells of X ′. These bands
are called naked bands and induce free product decompositions of π1(X

′). Hence
possibility (3) holds.

Finally, if X ′ has a simplicial component X ′
i, an R-tree dual to X ′

i can be con-
structed, on which G acts. Bass–Serre theory can then be used to show that G
splits as a non-trivial free product. □

Definition 5.24. A group G is a closed surface group if it is the fundamental group
of a closed surface. For example the groups in case (1) of the previous theorem are
closed surface groups.

Definition 5.25. A group G is freely indecomposable if it is nontrivial and cannot
be expressed as a free product of nontrivial groups.

The next theorem tells us what happens in the slightly more general case of
groups acting freely on R-trees.

Theorem 5.26 ([BF95, Theorem 9.8]). Let G be a finitely presented group acting
freely by isometries on an R-tree T . Then G is the free product of free abelian
groups and closed surface groups.

Proof. (Sketch) We can write G as the free product of a free group and a number of
freely indecomposable factors. It can be shown that each of these factors satisfies
the conditions of Theorem 5.23, and by assumption neither possibility (2) nor (3)
holds, so each freely indecomposable factor must be a closed surface group. □

Finally, we see the case of stable actions.

Theorem 5.27 ([BF95, Theorem 9.5]). Let G be a finitely presented group with a
stable action on an R-tree T . Then either

• G splits over an E-by-cyclic extension where E fixes some arc of T , or
• T is a line, and G splits over an extension of the kernel of the action by a

free abelian group.

5.4. Applications of R-Trees. Now that we have a good understanding of groups
which act (in nice ways) on R-trees, we can use this to understand any group which
can be shown to act in this way. In this section we will discuss some of these
applications, starting with some to hyperbolic groups. There will be no full proofs
here, just an idea of how R-trees are used in each case, and directions to where the
whole proof may be found.

5.4.1. In [Bes97], Bestvina describes a number of ways in which R-trees are used
to study automorphisms of hyperbolic groups. Amongst them are the following
theorems.

Theorem 5.28 ([Bes97, Theorem 7.3]). Let G be a hyperbolic group such that
Out(G) is infinite. Then G splits over a virtually cyclic subgroup.
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Proof. (Sketch) Since Out(G) is infinite, we can find an infinite sequence of pairwise
non-conjugate automorphisms fi. Define actions ρi of G on its Cayley graph by
ρi(g) = fi(g). Since the fi are automorphisms, these are actions by isometries.
Theorem 5.7 can then be used to show that there is a limit R-tree on which G acts
by isometries. It can then be shown that this action is stable, and the theorem
follows by Theorem 5.27. See [Bes97] for a more detailed proof. □

Theorem 5.29 ([RS94, Theorem 6.14]). Let G be a torsion-free, freely indecom-
posable hyperbolic group. Then Inn(G) has finite index in Aut(G).

Proof. (Sketch) Let S = {s1, ..., sn} be a generating set for G, and let

S−1 = {s−1
1 , ..., s−1

n }.

For each f ∈ Aut(G) define

d(f) = max
S∪S−1

|f(si)|

where |·| denotes word length. Choose as a coset representative for each coset of
Inn(G) in Aut(G) an element f with minimal d(f), and suppose for a contradiction
that there are infinitely many cosets. Then there is an infinite sequence f1, f2, ...
of distinct such coset representatives. As in the proof of Theorem 5.28, the actions
ρi associated to the fi are used to obtain a limit R-tree. A resolving band complex
X for the limit action can be constructed and Theorem 5.22 applied. It can be
shown (using the assumed properties of G) that all the components of X must be
of simplicial or surface type. In both of these cases, Rips and Sela describe a way
to find coset representatives with smaller d-values than the fi, thus reaching the
desired contradiction. □

5.4.2. R-trees are also instrumental in the study of Culler and Vogtmann’s Outer
Space. We will give a brief overview of this subject. For more detail see [Sha11,
Section 2].

Definition 5.30. The action of a group G on an R-tree is polyhedral if it is
topologically equivalent to a simplicial action.

Definition 5.31. For a group acting by isometries on an R-tree, the function
l : G→ R given by l(g) = ∥g∥ is called the length function associated to the action.

Let L(G) denote the set of all length functions for non-trivial actions of G on
R-trees. Quotienting out by the multiplicative action of R gives the space PL(G)
of projectivised length functions. Let Fn be the free group on n generators, and
Yn ⊆ PL(Fn) the set of projectivised length functions defined by polyhedral actions.
The space Yn is known as outer space, as it admits a ‘nice’ action of Out(Fn).

There is a theorem in Bass–Serre theory which states that a group is free if and
only if it acts freely on a simplicial tree. The theory of outer space can be used to
study free actions of free groups on R-trees. In the n = 2 case, it has been shown
that the only free actions of F2 on R-trees are polyhedral, i.e. their length functions
are in Y2. For every n ≥ 3 however, one can show that the set Ȳn\Yn (where Ȳn
denotes the closure of Yn in PL(Fn)) contains free actions. Therefore there are free
actions of Fn on R-trees which are not polyhedral, sometimes referred to as exotic
actions. This demonstrates another key difference between simplicial trees and the
slightly more general class of R-trees.
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5.4.3. We finish with another application to hyperbolic groups, and a return to
the discussion of ends of groups from Section 4.

Definition 5.32. A topological space X is locally connected at x ∈ X if every
open neighbourhood of x contains a connected open neighbourhood of x. The space
X is locally connected if it is locally connected at all of its points.

Note first that neither connected nor locally connected implies the other: the
union of two disjoint intervals in R is locally connected but not connected, whereas
the graph of sin( 1x ) is connected but not locally connected.

The proof of this theorem (the part that uses R-trees) can be found in [Swa96].
Note that it gives the converse result to Theorem 4.43.

Theorem 5.33 ([Bes97, Theorem 7.10]). Let G be a hyperbolic group. Then if G
has one end, its Gromov boundary ∂G is connected and locally connected.

Proof. (Sketch) The proof that ∂G is connected does not use R-trees. Nor does
that of the fact that if ∂G contains no cut points, it is locally-connected. However,
R-trees are used to show that ∂G never contains cut points. Note that here we
mean cut points in the topological sense (points which, when removed, disconnect
the space).

The proof is by contradiction. Supposing that ∂G has a cut point, the action of
G on its boundary is used to construct an R-tree on which G acts with trivial arc
stabilisers. Theorem 5.27 can then be used to conclude that G splits over a 2-ended
group. An inductive argument on the resulting graph of groups decomposition of
G and a result concerning the ‘complexity’ of such a decomposition are then used
to derive the contradiction. □
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[Krö10] B. Krön. Cutting up graphs revisited - a short proof of Stallings’ structure theorem,

2010.

[Lev94] G. Levitt. Graphs of Actions on R-Trees. Commentarii Mathematici Helvetici, 69:28–
38, 1994.

[Lev07] G. Levitt. On the automorphism group of generalized Baumslag-Solitar groups. Ge-
ometry & Topology, 11:473 – 515, 2007.

[Lev15] G. Levitt. Quotients and subgroups of Baumslag–Solitar groups. Journal of Group

Theory, 18:1 – 43, 2015.

[LS15] R.C. Lyndon and P.E. Schupp. Combinatorial Group Theory. Classics in Mathematics.
Springer Berlin Heidelberg, 2015.

[Mei08] J. Meier. Groups, Graphs and Trees: An Introduction to the Geometry of Infinite
Groups. London Mathematical Society Student Texts. Cambridge University Press,
2008.

[Mes72] S. Meskin. Nonresidually Finite One-Relator Groups. Transactions of the American

Mathematical Society, 164:105–114, 1972.



50 SEAN O’BRIEN, ALICJA PIETRZAK, LORNA RICHARDSON, AND TALIA SHLOMOVICH

[Mol91] D.I. Moldavanskii. Isomorphism of the Baumslag-Solitar groups. Ukrainian Mathemat-

ical Journal, 43(12):1569 – 1571, 1991.

[Ono18] A.C. Lopes Onorio. Relative Ends and Splittings of Groups. PhD thesis, Univer-
sity of Southampton, 2018. https://eprints.soton.ac.uk/428055/1/Lopes_Onorio_

AnaClaudia.pdf [Date accessed: 14-Mar-2025].

[RS94] E. Rips and Z. Sela. Structure and Rigidity in Hyperbolic Groups I. Geometric and
Functional Analysis, 4:337–371, 1994.

[Ser80] J.P. Serre. Trees. Springer Monographs in Mathematics. Springer Berlin Heidelberg,

1980.
[Sha11] P.B. Shalen. Dendrology and its applications, 2011. https://api.semanticscholar.

org/CorpusID:15234060 [Date accessed: 14-Mar-2025].

[SS18] A.P. Sánchez and M. Shapiro. Growth in higher Baumslag–Solitar groups. Geometriae
Dedicata, 195:79 – 99, 2018.

[Sta71] J. Stallings. Group Theory and Three-Dimensional Manifolds. Yale University Mono-
graphs. Yale University Press, 1971.

[Sta91] J.R. Stallings. Non-Positively Curved Triangles of Groups. Group theory from a geo-

metrical viewpoint, August 1991.
[Swa96] G.A. Swarup. On the cut point conjecture. Electron. Res. Announc. Amer. Math.

Soc., 2(2):98–100, 1996.

[Why01] K. Whyte. The large scale geometry of the higher Baumslag-Solitar groups. Geometric
& Functional Analysis GAFA, 11:1327 – 1343, 2001.

[Wil03] H. Wilton. Rips Theory, 2003. https://www.dpmms.cam.ac.uk/~hjrw2/Notes/rips.

pdf [Date accessed: 14-Mar-2025].
[Wil04] H. Wilton. Bass–Serre theory, 2004. https://www.dpmms.cam.ac.uk/~hjrw2/Talks/

bassserre.pdf [Date accessed: 14-Mar-2025].

https://eprints.soton.ac.uk/428055/1/Lopes_Onorio_AnaClaudia.pdf
https://eprints.soton.ac.uk/428055/1/Lopes_Onorio_AnaClaudia.pdf
https://api.semanticscholar.org/CorpusID:15234060
https://api.semanticscholar.org/CorpusID:15234060
https://www.dpmms.cam.ac.uk/~hjrw2/Notes/rips.pdf
https://www.dpmms.cam.ac.uk/~hjrw2/Notes/rips.pdf
https://www.dpmms.cam.ac.uk/~hjrw2/Talks/bassserre.pdf
https://www.dpmms.cam.ac.uk/~hjrw2/Talks/bassserre.pdf

	1. Introduction
	1.1. Overview

	2. Baumslag-Solitar groups and their generalisation
	2.1. Definition and first properties
	2.2. Graphs of groups and G-trees
	2.3. Generalised Baumslag-Solitar (GBS) groups
	2.4. Concluding remarks

	3. Complexes of groups
	3.1. Small categories without loops
	3.2. Complexes of groups
	3.3. Algebraic topology associated to complexes of groups

	4. Ends of groups
	4.1. Preliminaries
	4.2. Splittings of groups
	4.3. Cutting up graphs
	4.4. Links to Bass–Serre theory and further questions

	5. Groups acting on R-Trees
	5.1. Definition and Basic Examples
	5.2. Group Actions
	5.3. Band Complexes and the Rips Machine
	5.4. Applications of R-Trees

	References

