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1 Introduction

The main goal of this work is to show that there exists a unique gap in the isoperimetric

spectrum, P, defined as follows:

P = {α ∈ [1,∞) ∶ f(n) = nα is a Dehn function}.

This gap, which we refer to throughout this work as the Gromov gap, is the interval

(1,2) ⊂ P. This name arises from Gromov, who first proved its existence [1] in 1987. In

the early 1990s, Gromov’s result prompted research on the isoperimetric spectrum, which

was pioneered by Brady and Bridson among others. The question of whether or not there

exist groups whose Dehn functions are of rational (and later transcendental and irrational)

degree attracted interest to many geometric group theorists, and this topic continues to

be an active area of research in Geometric Group Theory today.

In order to delve into the isoperimetric spectrum, we first introduce some preliminaries

about Dehn functions in Section 2, and we relate both the algebraic and topological sides

of the story. In particular, our exposition is guided by Bridson’s paper, The Geometry

of the Word Problem [2] for the algebraic ideas and a combination of Brady-Riley-Short’s

text, The Geometry of the Word Problem for Finitely Generated Groups [3] and Bridson-

Haefliger’s Metric Spaces of Non-Positive Curvature [4] for the topological concepts.

In Section 3, we prove that if a group has a subquadratic Dehn function, then it in fact

has a linear Dehn function. Although orginally shown by Gromov (1987), here we combine

the approaches of Papasoglu [5] and Bridson-Haefliger [5, p. 417–8] to prove the existence

of this gap in the isoperimetric spectrum.

We then follow the work of Brady and Bridson in their paper titled, There is only one

gap in the isoperimetric spectrum [6] in Section 4. We touch upon snowflake groups as a

graph of groups and use this construction to determine a lower and upper bound for the

Dehn function of this family of groups. After these proofs, we eventually conclude that

the Gromov gap is unique.

To conclude, we mention some related results about the isoperimetric spectrum which led

to this discovery, as well as some more recent work, in our concluding remarks. As far as

possible, this dissertation is self-contained, however for brevity we take some results as a

black box. In particular, results which would otherwise introduce a tangent are listed in

the Appendix.

Finally, thank you to my supervisor Dr. Robert Kropholler for all his guidance on this

topic and his help on some (very!) challenging proofs.
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2 Background

2.1 Algebraic notions

In order to define Dehn functions and the isoperimetric spectrum, we first introduce some

key ideas and notation for our discussion. We recall the definition of the free group from

MA4H4 Geometric Group Theory.

Definition 2.1.1 (Free group, equivalent words). The free group on the set S, denoted

F (S), consists of the set of equivalence classes of words constructed from the alphabet

S ∪ S−1. The words w1,w2 ∈ F (S) are equivalent, written w1 ∼ w2, if there is a sequence

of elementary contractions or expansions between the words w1 and w2.

We assume that the free group is in fact a group, and therefore that compositions within

the free group are well-defined and so every word corresponds to a unique reduced word.

Next we introduce two different types of closure for a subset of a group G.

Definition 2.1.2 (Normal closure). Let G be a group. The normal closure of a subset A ⊆
G is the unique smallest normal subgroup of G containing A, denoted by ⟪A⟫. Explicitly,
⟪A⟫ ∶= ⟨g−1ag ∶ g ∈ G,a ∈ A⟩.

Definition 2.1.3 (Symmetric closure). The symmetric closure of the set of relations

R, denoted by R∗, is the set of elements of R, their cyclic permutations and the cyclic

permutations of their inverses.

This leads us to the following standard definition for the presentation of a group.

Definition 2.1.4 (Presentation of a group). Let G be a group. A presentation P of G is

defined by ⟨S ∣ R⟩ = F (S)/⟪R⟫.

In this section, we take G = ⟨S ∣ R⟩ as a finitely-presented group with generating set S and

relations R. For the free group F (S), we write µ ∶ F (S) → G as the natural surjection of

the free group generated by S onto G. That is, for any word w in the free group F (S),
µ(w) ∈ G is the unique reduced word.

Notation 2.1.5. Let w1 and w2 be not necessarily reduced words in F (S). We follow

Bridson’s article [2, p. 5] and introduce the following notation.

⋆ We write w1 =
F (S)

w2 when the words w1,w2 are equal in the free group, i.e. they

are elements of the same equivalence class (equal up to elementary expansions and

contractions). Sometimes, we write this as w1 = w2 in F (S), and these two notations

are interchangeable. For w1 =
G
w2, we simply write w1 = w2.

⋆ We write w1 ≡ w2 when the words are identical.

Example 2.1.6. Consider the group presentation G = ⟨x, y ∣ x2⟩. Let w ≡ xyxx ∈ F (S).
Then µ(w) = xyx2 = xy ∈ G.
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Definition 2.1.7 (Null-homotopic). A word w (not necessarily reduced) in F (S) is null-
homotopic if µ(w) = 1.

Lemma 2.1.8. A word w in F (S) is null-homotopic if and only if it can be written in

the form

w =
F (S)

n

∏
i=1

uir
±1
i u−1i

where ui ∈ F (S) and ri ∈ R, for i ∈ {1, . . . , n}.

Proof. The reverse implication is trivial by free cancellation, so we concentrate

on the forward implication. By Definition 2.1.2, the elements of G which can be

expressed in the form ∏n
i=1 uir

±1
i u−1i described above are precisely the elements of

the normal closure ⟪R⟫. Hence, it suffices to show that if w is null-homotopic, then

w ∈ ⟪R⟫. Suppose not, then there is w ∈ ⟪R⟫ such that w is not null-homotopic. But

each generator of the normal closure of R is of the form uiru
−1
i = uiu−1i = 1G, which

contradicts the assumption that w is not null-homotopic.

Definition 2.1.9 (Area of a word). [7, p. 35] Under the above conditions, the area of a

word w is defined to be

A(w) =min{n ∈ N ∶ w =
F (S)

n

∏
i=1

uir
±1
i u−1i }.

In other words, it is the smallest number n for which a word w equivalent to the identity

element can be expressed as the product of n conjugates of relators (and their inverses).

From this we observe the following useful fact.

Lemma 2.1.10. If w1 and w2 are null-homotopic words in F (S), then A(w1w2) ≤ A(w1)+
A(w2).

Proof. The proof of this arises by concatenating the two minimal products of

conjugates of relations for the words w1 and w2 and observing that this is a product

of conjugates of relations (not necessarily minimal) for the product w1w2.

We next introduce the Dehn function, which measures the minimal number of defining

relations needed to reduce a word to the identity element. The primary reason that it

is of interest is because it provides us with a quantitative measure of complexity of the

Word Problem. That is to say, the Dehn function gives us an answer to the following

question: Given an word w formed from the set of generators and their inverses of a

finitely-presented group ⟨S ∣ R⟩, how difficult is it to determine whether w represents the

identity element in this group?

Definition 2.1.11 (Dehn function, algebraic). The Dehn function for a presentation
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⟨S ∣ R⟩ is a map δ ∶ N→ N defined by

δ(n) = { max
w∈F (S)

A(w) ∶ ℓ(w) ≤ n, µ(w) = 1} .

Sometimes we denote the Dehn function with respect to a particular presentation P = ⟨S ∣
R⟩ by δP .

We briefly remark that the map δ is well-defined since ⟨S ∣ R⟩ is finitely-presented.

Therefore for any fixed n ∈ N, the value of δ(n) is finite since there are only finitely

many words of length at most n [6, p. 2].

Definition 2.1.12 (Dehn dominated, Dehn equivalent). Given two functions f, g ∶ [0,∞) →
[0,∞), we say that f is Dehn dominated by g, denoted f ⪯ g, if there exists a constant

K > 0 such that

f(x) ≤Kg(Kx +K) +Kx +K for all x ∈ [0,∞).

If f ⪯ g, and g ⪯ f , then we say that f and g are Dehn equivalent and denote this by f ≃ g.

Lemma 2.1.13. The relation ≃ as above is an equivalence relation.

Proof. This is straightforward to prove in the usual way, and therefore we omit this

proof.

A natural question that arises at this stage is: Which relations between groups G,H

guarantee that the groups have equivalent Dehn functions? One answer to this is that a

change of group presentation for the same group leads to an equivalent Dehn function.

This provides us with a useful trade-off: we can think about the Dehn function of a group

up to equivalence with the upshot that it is independent of the group presentation.

Proposition 2.1.14. Let G,H be isomorphic finitely-presented groups with presentations

P,Q respectively. Then the Dehn functions of those presentations are equivalent, i.e.

δP ≃ δQ.

Proof. We outline the reasoning provided in Bridson’s paper [2, p. 7], using the

notes [8, p. 15–16]. To start, we consider two special cases. We then show that every

presentation can be derived from these two cases.

Case 1. R′ ⊆ ⟪R⟫ is a finite set and P = ⟨S ∣ R⟩, Q = ⟨S ∣ R ∪R′⟩.

In this case, we show that adding redundant relators R′ to a group presentation results

in an equivalent Dehn function. This means that each relator r ∈ R′ can be expressed

in F (S) as a product of mr conjugates of the old relators R and their inverses. Let

m be the maximum of the mr for all r ∈ R′, and suppose that a word w ∈ F (S) can
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be written as a product of N conjugates of relators from R ∪R′ and their inverses.

By this, we can rewrite w as a product of at most mN conjugates of the relators R±1.

Notice also that by definition, the area of w with respect to Q is at most its area

with respect to P. Therefore, we deduce that δQ(n) ≤ δP(n) ≤ mδQ(n) for all n ∈ N.
Hence, δP ≃ δQ.

Case 2. P = ⟨S ∣ R⟩ and Q = ⟨S ∪ T ∣ R ∪R′⟩, where R′ = {tw−1t ∶ t ∈ T,wt ∈ F (S)}.

We first show that δP ⪯ δQ. Consider the retraction ρ ∶ F (S ∪T ) → F (S) which sends

s↦ s and t↦ wt. Observe that ρ(r) = r for all r ∈ R, and ρ(r′) = 1F (S) for all r′ ∈ R′.

Let w ∈ F (S) and d be the area of w with respect to the presentation Q, denoted
AQ(w). Then, w = ∏d

i=1 uir
±1
i u−1i where gi ∈ F (S ∪ T ), and ri ∈ R ∪R′. Applying the

retraction ρ, ρ(w) = ∏d
i=1 ρ(ui)ρ(ri)±1ρ(u−1i ) and ρ(w) = w since ρ is a retraction.

Therefore, we have

w =
d

∏
i=1

ρ(ui)ρ(ri)±1ρ(u−1i ).

By our observation, ρ(ri) equals ri or 1F (S) for each 1 ≤ i ≤ d, w can be written as

product of at most d conjugates of relators and their inverses in R. Hence δP ⪯ δQ.

Next, we show δQ ⪯ δP . Let M =maxt∈T {ℓS(wt)}, where ℓS is the length with respect

to the generating set S. Consider a null-homotopic word w ∈ F (S ∪ T ). By applying

relations from R′, we can write this as a word w′ ∈ F (S). Explicitly,

w = s±1i1 s
±1
i2 . . . tj1 . . . s . . . t ⋅ ⋅ ⋅ ∈ F (S ∪ T )

w′ = s±1i1 s
±1
i2 . . .wtj1

. . . s . . .wt ⋅ ⋅ ⋅ ∈ F (S).

From this, ℓS(w′) ≤MℓS∪T (w). Since we apply at most ℓS∪T (w) relators to transform

w into w′, we have that

AQ(w) ≤ AP(w′) + ℓS∪T (w)
≤ δP(MℓS∪T (w)) + ℓS∪T (w).

It follows that δQ(n) ≤ δP(Mn) + n and so δQ ⪯ δP .

Proof of proposition: Suppose the presentations P = ⟨S ∣ R⟩ and Q = ⟨S′ ∣ R′⟩ give
rise to isomorphic groups. Then for all s ∈ S, there is us ∈ F (S′) such that s maps

to us under the isomorphism between P and Q. Similarly, for all s′ ∈ S′, there is a

corresponding element vs′ ∈ F (S).

Let T = {su−1s ∶ s ∈ S} and T ′ = {s′v−1s′ ∶ s′ ∈ S′}. We then define a presentation

I = ⟨S ∪ S′ ∣ R ∪R′ ∪ T ∪ T ′⟩ which acts as an intermediate presentation between P
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and Q we can transform to using the above two cases. Therefore, δP ≃ δI ≃ δQ and

by transitivity of the equivalence relation ≃, we are done.

A more general result (which we will not prove) is that the Dehn function is actually a

quasi-isometry invariant, up to equivalence.

Theorem 2.1.15. If G is a finitely presented group with presentation P and G′ is a

finitely generated group quasi-isometric to G, then G′ is also finitely presented with finite

presentation Q and the Dehn functions of G with respect to P and G′ with respect to Q
are equivalent, i.e. δP ≃ δQ.

2.2 Topological notions

2.2.1 Van Kampen diagrams

We now turn our attention to the geometrical notion of isoperimetry. Informally, the

isoperimetric problem concerns finding a closed curve with the smallest perimeter which

encloses the largest area. To see how Dehn functions relate to this intuitive concept of

isoperimetry, it is useful to visualise the area of a word, which we introduced in Definition

2.1.9. To do this, we use a construction known as a van Kampen diagram. We proceed to

define this construction formally by introducing some new notation and definitions from

[3, p. 89–90]. We then return to defining isoperimetry more formally in Section 2.3.

Definition 2.2.1 (Combinatorial, combinatorial complex). A continuous map between

CW complexes is said to be combinatorial if it sends open cells homeomorphically onto

open cells. A combinatorial complex is a CW complex all of whose attaching maps are

combinatorial (with respect to some CW structure on the boundary of the cell being

attached).

Definition 2.2.2 (Presentation 2-complex). Let G be a finitely presented group with

presentation P = ⟨S ∣ R⟩ = ⟨x1, . . . , xm ∣ r1, . . . , rn⟩. We consider the following construction.

1. Take m oriented edges, labelled by the generators x1, . . . , xm, and identify all the

vertices to form a rose.

2. Let C1, . . . ,Cn be 2-cells, where each 2-cell has Ci has ni edges, where ni is the

length of the relator ri. Attach these 2-cells by identifying the boundary circuit of

Ci with the edge-path in the rose along which one reads ri.

The resulting complex is called the presentation 2-complex and is denoted K⟨S∣R⟩.

Definition 2.2.3 (Cayley 2-complex). The Cayley 2-complex, denoted Cay2(P), is the

universal cover of the presentation 2-complex for P.

Definition 2.2.4 (van Kampen diagram). A van Kampen diagram over a presentation

⟨S ∣ R⟩ is combinatorial map ∆ → Cay2(P), where ∆ is a connected, simply connected,
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planar 2-complex1, which satisfies the following property: For each 2-cell of ∆, the label

of the boundary cycle of the region, is a reduced word in F (S) that belongs to R∗.

From this, the diagram has a boundary cycle, denoted by B∆, which is an edge loop in

the 1-skeleton starting and ending at the base vertex of ∆ and going around ∆ in the

clockwise direction. The label of the boundary cycle is a null-homotopic word w ∈ F (S)
called the boundary label. We say that ∆ is a van Kampen diagram for w.

Pictorially, we have that each 1-cell of ∆ is labelled by an arrow and a letter s ∈ S, and
some vertex in the topological boundary of ∆ ⊆ R2 is a base-vertex2.

Example 2.2.5. To see this, consider the van Kampen diagram below.

Figure 1: van Kampen diagram ∆ for the presentation ⟨a, b ∣ ba2b−1a−3 = 1⟩. The base-
vertex is indicated by the red vertex as shown. Figure replicated from [9, p. 7].

Reading off the diagram, ∆ is a van Kampen diagram for the word w = a2b−1a2ba−4b−1ab
represented by the boundary cycle.

We check that the diagram ∆ is a van Kampen diagram. It is simply connected as there

is a path between any two vertices, and every loop is homotopy equivalent to a point since

each loop contains a 2-cell. Every 1-cell is labelled by an arrow and a generator, and the

base-vertex is marked by the vertex in red.

It is quick to check that each of the three 2-cells has boundary word which is a cyclic

permutation of the relator r = ba2b−1a−3 or its inverse r−1 = a3ba−2b−1. The set of cyclic

permutations of r and cyclic permutations of r−1 is exactly the symmetric closure R∗.

We next establish some key properties and characteristics of van Kampen diagrams.

Definition 2.2.6 (Minimal van Kampen diagram). For a van Kampen diagram ∆ of a

word w, we call the diagram ∆ minimal if it has the minimum total number of cells of

any diagram for w.

1Equivalently, some sources define ∆ equal to S2 ∖ e∞, for S2 homeomorphic to S2 and e∞ an open
2-cell of S2.

2More precisely, a base-vertex is a basepoint of the topological space ∆, where we specify this point to
be a vertex of the graph given by the 1-skeleton of ∆.
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Definition 2.2.7 (Area of a van Kampen diagram). The area of a van Kampen diagram

∆, denoted A(∆), is defined by the number of 2-cells in ∆.

The following result on the existence of van Kampen diagrams is a key result often referred

to as van Kampen’s Lemma. It allows us to relate the algebraic idea of a null-homotopic

word in a free group to a van Kampen diagram corresponding to that word, making them

a useful tool for studying isoperimetric functions.

Lemma 2.2.8 (van Kampen’s Lemma). Let G = ⟨S ∣ R⟩ and w ∈ F (S). The following the

equivalent:

(i) The word w is null-homotopic.

(ii) There exists a van Kampen diagram ∆ over the presentation ⟨S ∣ R⟩ where w is the

boundary label.

Proof. [Sketch] For the full details, we refer the reader to Bridson’s article [2,

Section 4].

To show that (i) implies (ii), recall that by Lemma 2.1.8, if w is null-homotopic in

F (S), then it can be expressed as a product w =
F (S)

∏n
i=1 uir

±1
i u−1i where ui ∈ F (S)

and ri ∈ R, for i ∈ {1, . . . , n}. We construct the lollipop diagram whose boundary word

is the unreduced product given by ∏n
i=1 uir

±1
i u−1i .

Figure 2: Lollipop diagram for a word w written as a product of n conjugates of
relators (and their inverses).

Recall that w is not necessarily a reduced word, and this was highlighted by the

distinction in our notation =
F (S)

and ≡. Therefore, this product may not be exactly

equal to the word w, but can be transformed into the word w by a finite sequence of

moves consisting of elementary contractions and expansions. In this way, it follows

that the lollipop diagram can be modified by a finite sequence of moves to produce a

van Kampen diagram with boundary label w.

To show that (ii) implies (i), we may proceed by induction on the area of the van
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Kampen diagram ∆. For n = 1, let e be the 2-cell that the boundary curve w arrives

at (reading anti-clockwise around B∆). Let g be the path from the basepoint vertex p

to e, and let r be the relator read anti-clockwise around e. Then, w ≡ grg−1, where g is

a product of elements in S∪S−1. Then, it follows that w ≡ grg−1 = gg−1 = 1G in G. For

the inductive step, let e be the first 2-cell that the boundary curve w arrives at, and let

∆′ =∆∖e. Since A(∆′) = A(∆)−1, we can see by induction that w =
F (S)

∏n
i=1 uir

±1
i u−1i

where n = A(∆).

Due to this lemma, the Word Problem effectively reduces to determining whether a word

admits a van Kampen diagram. This has a useful corollary as follows.

Corollary 2.2.9. Let ∆ be a minimal van Kampen diagram with boundary word w. Then

the area of the van Kampen diagram is equal to the area of the word w, i.e. A(∆) = A(w).

Proof. As a consequence of the proof of Lemma 2.2.8, for a diagram ∆ with boundary

word w, A(∆) is equal to the number of conjugates of relators whose product gives

the word w [2, p. 20-21]. By modifying the van Kampen diagram using the lollipop

diagram as above, the area of a minimal van Kampen diagram for w corresponds a

minimal number of conjugates of relators whose product gives w. Therefore, A(∆) =
A(w). For further details, see [4, p. 155].

2.2.2 Area fillings

In this section, we continue to define topological notions and progress to dealing with

metric graphs and ε-fillings. In doing this, we lay out the groundwork for proving TheoremB

in Section 3.2. Here we use definitions provided in Bridson and Haefliger [4, p. 414].

To start we introduce the notion of a metric graph, which is a type of length space.

Definition 2.2.10 (Length metric, length space). Let (X,d) be a metric space. A metric

d is said to be a length metric if the distance between every pair of points x, y ∈X is equal

to the infimum of the length of rectifiable curves joining them. If there are no such curves

then d(x, y) = ∞. If d is a length metric then the metric space (X,d) is called a length

space.

The formal construction of a metric graph is fairly involved, so we outline a more intuitive

definition which will be more useful in our approach. We may think of metric graphs

as metric spaces that we may obtain by taking a connected graph (i.e. a connected 1-

dimensional CW-complex), and applying a notion of distance to the edges of the graph as

bounded intervals of the real line. We define the metric between two points by the length

metric. In this context, this metric is defined by the infimum of the lengths of paths

joining the points, where length is measured using the chosen metrics along the edges.
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In the context of metric graphs, we define useful maps including triangulations and more

specifically ε-fillings.

Definition 2.2.11 (Triangulation). A triangulation of the unit disk D2 is a homeomorphism

P ∶ D2 →X, where X is a combinatorial 2-complex in which every 2-cell is has three edges.

We endow D2 with the induced cell structure and refer to the pre-images under P of 0-cells,

1-cells and 2-cells as, respectively, the vertices, edges and faces of P .

Definition 2.2.12 (ε-filling, ε-area). Let X be a metric space and γ ∶ S1 → X be a

rectifiable3 loop in X. An ε-filling (P,Φ) of γ consists of a triangulation P of D2 and a

(not necessarily continuous) map Φ ∶ D2 →X such that Φ∣S1 = γ and the image under Φ of

each face of P is a set of diameter at most ε. We write ∣Φ∣ to denote the number of faces

of P and refer to this as the area of the filling. The ε-area of γ is defined to be:

Areaε(γ) =min{∣Φ∣ ∶ Φ is an ε-filling of γ} .

If there is no ε-filling for a given value of ε, then we define Areaε(γ) ∶= ∞.

Definition 2.2.13 (Edge-loop). Let X be a metric graph. An edge-loop in X is a loop

γ ∶ S1 →X which is the concatenation of a finite number of paths, each of which is either:

⋆ A constant speed parametrisation of an edge: denoted by γi ∶ S1 →X.

⋆ A constant map at a vertex, denoted by cj ∶ vj → X for vj ∈ V, where V represents

the vertex set of the graph X.

We write l0(γ) to denote the number of maximal non-trivial arcs where γ ∶ S1 → X is

constant.

Remark 2.2.14. Observe that l0(γ) ≤ l(γ)+ 1. We have equality in the case where γ is the

constant loop at a point in X.

This definition gives rise to the definition of an ε-filling of an edge-loop, called a standard

ε-filling. This is formally defined by applying the definition above to an edge-loop in way

we might expect.

Definition 2.2.15 (Standard ε-filling). A standard ε-filling of an edge-loop γ is an ε-

filling (P,Φ) given by a triangulation P of the disk such that all of the vertices on the

boundary circle BD2 are points of concatenation of the given edge-loop γ, and each edge of

the triangulation is either mapped to a concatenation of edges in X, or is sent to a vertex

of X by a constant map.

3Loosely speaking, this means that the loop has finite length.
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2.3 Isoperimetric notions

We now relate our work so far to isoperimetry by recalling the following key definition.

Definition 2.3.1 (Isoperimetric spectrum). The isoperimetric spectrum is defined by the

set

P = {α ∈ [1,∞) ∶ f(n) = nα is a Dehn function}.

We will later prove the following theorems, and conclude that linear Dehn function characterises

hyperbolic groups by proving the two theorems below. In both cases, we take the group

G to be finitely-presented, and fix a presentation ⟨S ∣ R⟩ for G.

Theorem A. If δ is subquadratic for the presentation ⟨S ∣ R⟩, then G is hyperbolic.

Theorem B. If G = ⟨S ∣ R⟩ is hyperbolic, then δ is linear for the presentation of G.

Together, these results implies the unexpected result that the isoperimetric spectrum P
contains a gap which is exactly the interval (1,2). This is often referred to as the Gromov

Gap.

Theorem C. More precisely, if δ is subquadratic for the presentation ⟨S ∣ R⟩, then δ is

in fact linear, and so P ∩ (1,2) = ∅.

As shown in Brady and Bridson’s paper [6], it turns out that this is the only gap in the

isoperimetric spectrum. We discuss the techniques from [6] used to prove this result in

Section 4.

Definition 2.3.2 (Isoperimetric inequality for groups). Let G be a group.

⋆ We say that G satisfies a linear isoperimetric inequality if there exists k ∈ R such

that A(w) ≤ k ⋅ ℓ(w) for all the words w ∈ F (S) with µ(w) = 1.

⋆ Similarly, we say that G satisfies a subquadratic isoperimetric inequality if there

exists k ∈ R such that A(w) < k ⋅ ℓ(w)2 for all the words w ∈ F (S) with µ(w) = 1.

Remark 2.3.3. By Corollary 2.2.9, we can formulate an equivalent notion of isoperimetric

inequalities by replacing A(w) with A(∆), where ∆ is a minimal van Kampen diagram

for the word w.

This gives rise to a corresponding definition of an isoperimetric inequality for metric spaces.

Definition 2.3.4 (Isoperimetric inequality for metric spaces). A function f ∶ [0,∞) →
[0,∞) is called a coarse isoperimetric inequality for a metric space X if there exists ε > 0
such that every rectifiable loop γ in X has an ε-filling and Areaε(γ) ≤ f(l(γ)).

We next define Dehn functions in this context. It is particularly helpful to consider two

particular types of metric spaces, which will appear in the next section.
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Definition 2.3.5 (Dehn function, geometric). (i) For X = Cay2(P): For an edge-loop

γ in the Cayley 2-complex of a finite presentation P, Area(γ) is the minimum of

Area(Γ) over all van Kampen diagrams spanning γ.

The Dehn function δP ∶ N → N of a finite presentation P with Cayley 2-complex

Cay2(P) is:

δP(n) =max{Area(γ) ∣ edge-loops γ in Cay2(P) such that ℓ(γ) ≤ n} .

(ii) For X = C(G,S) where G = ⟨S ∣ R⟩ is a finitely-presented group:

The Dehn function δN ∶ N→ N of a finite presentation with Cayley graph C(G,S) is:

δN(n) = sup{AreaN(γ) ∶ ℓ(γ) ≤ n}.

It turns out that we can further extend this notion of an isoperimetric inequality to metric

spaces using ε-fillings, and these notions of isoperimetry are equivalent.

Proposition 2.3.6. Let X = C(G,S) where G = ⟨S ∣ R⟩ is a finitely-presented group.

Then, if N ∈ N is sufficiently large, the function δN is Dehn equivalent to the Dehn

function of the presentation G = ⟨S ∣ R⟩.

Proof. For brevity, we leave this as outside the scope of the project, and refer the

reader to [4, Exercise (5)].

Taking all of this into account, we have started to uncover an equivalence between the

algebraic and geometric notions of area and isoperimetry. As we move toward the next

section where we demonstrate that a linear Dehn function characterises hyperbolic groups,

we will see that the ability to translate between these algebraic and geometric contexts is

a useful tool.
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3 Hyperbolic Groups

3.1 Subquadratic implies hyperbolic

The goal for this subsection is to prove Theorem A; the existence of a linear Dehn function

for some finitely-presented group G implies that the group G is hyperbolic. To do this,

we follow and build upon the method outlined in Papasoglu’s paper [5]. In particular,

we focus on triangular group presentations, which we can use to form a lower bound for

A(w).

To start, we recap the definition of a hyperbolic group.

Definition 3.1.1 (Hyperbolic group). A finitely-generated group G = ⟨S ∣ R⟩ is hyperbolic
if its Cayley graph C = C(G,S) is hyperbolic as a metric space.

Definition 3.1.2 (Triangular presentation). A presentation ⟨S ∣ R⟩ is called triangular if

all relators r ∈ R satisfy ℓ(r) = 3, in other words, all relators have length exactly 3.

Lemma 3.1.3. Let G be a finitely-presented group. Then there exists a triangular presentation

of G.

Proof. Let the presentation of G be denoted P1 = ⟨S1 ∣ R1⟩. Consider the

presentation P2 = ⟨S2 ∣ R2 given by taking the set of generators to be the underlying set

of elements of G, and taking the set of relations to be exactly the products of the form

g1g2h
−1 where g1, g2 ∈ G and h is the unique element of G such that h = g1g2. To show

that this really is a presentation of G, we argue that we can achieve the presentation

P2 by applying a sequence of Tietze transformations to P1. For more details on

Tietze transformations, as well as showing that they send a group presentation to a

presentation of an isomorphic group, see [10, p.89–90].

To start, adding all the generators from P2 to P1 is a sequence of Tietze transformations,

so

⟨S1 ∪ S2 ∣ R1⟩ = ⟨S1 ∣ R1⟩.

Since the elements of S1 are contained in the elements of G, removing the generators

S1 are also Tietze transformations. Therefore,

⟨S2 ∣ R1⟩ = ⟨S1 ∪ S2 ∣ R1⟩ = ⟨S1 ∣ R1⟩.

Moreover, each of the relators r of R1 can be expressed by some product of the form

h = g1g2 for g1, g2 ∈ G. (Otherwise, r is not a relation.) Thus,

⟨S2 ∣ R1⟩ = ⟨S2 ∣ R1⟩ = ⟨S1 ∪ S2 ∣ R1⟩ = ⟨S1 ∣ R1⟩.
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Now we know that a triangular presentation exists for any finitely presented group, we

proceed to the main result for this subsection.

Theorem 3.1.4. Let P = ⟨S ∣ R⟩ be a triangular presentation of a group G and suppose

that there is an integer B such that every w ∈ ⟪R⟫ with area A(w) > B satisfies A(w) <
1

128
( 1
256ℓ(w)

2 − 3ℓ(w)). Then G is a hyperbolic group.

Proof. We prove the contrapositive. Assume that G is not a hyperbolic group;

it suffices to show that for all non-negative integers B, there is some word w ∈ ⟪R⟫
with A(w) > B such that A(w) ≥ 1

128
( 1
256ℓ(w)

2 − 3ℓ(w)). Throughout the proof,

let A = max{200,B}. We will show that A(w) > A ≥ B, which shows in turn that

A(w) > B as required.

Part 1:

Here we define a geodesic between points x, y in a metric space X as an isometric map

from the interval [0, d(x, y)] to X, and take X to be the Cayley graph C of G. (Note

that C is a geodesic metric space.)

We define for n ∈ N, a function fA ∶ N≥0 → N≥0 by taking the infimum over all geodesics

γ, γ′ and all integers N ∈ N≥0 as follows:

fA(n) = inf
N∈N≥0
γ,γ′

{d(γ(N + n), γ′(N + n)) ∶ d(γ(N), γ′(N)) ≥ 6A,γ(0) = γ′(0) vertex in C} .

We write f as a shorthand for fA. Here, distances are defined with respect to the

word metric on the Cayley graph C. By the definition of the word metric, all distances

have non-negative integer values. Note that f is therefore an integer-valued function.

Since we assume G is not hyperbolic, geodesics in C do not diverge. Hence f is

bounded above, i.e. there exists K ∈ N≥0 such that limn→∞ f(n) =K < ∞.

By the properties of convergence of integer-valued functions, there exists some k ∈ N≥0
such that for all n > k, f(n) = K. Therefore, there exists n0 > 2K2 + 2K such that

f(n0) = K. Also, by definition of f , for every integer A there exist geodesics γ, γ′

with image in C and values of n0,N0 ∈ N≥0 such that d(γ(N0), γ′(N0)) ≥ 6A and

d(γ(N0 + n0), γ′(N0 + n0)) = K. (The values 2K2 + 2K and 6A are carefully chosen

for the proof of Claim 3.1.5, the statement of which is given below.)

Our motivation for constructing the function f lies in the fact that it guarantees the

existence of geodesics γ, γ′ with the above properties for a fixed value of A. Thus,

from here on, we no longer discuss f but instead the geodesics γ, γ′. These properties

allow us to prove the following result, which initially appears a bit arbitrary, but helps
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set up our construction in Part 2.

For an integer choice of M , let S = d(γ(M), γ′) and T = ⌊S3 ⌋ = ⌊
d(γ(M),γ′)

3 ⌋. We make

the following useful claim.

Claim 3.1.5. There exists an integer M which satisfies the following conditions:

(i) The distance d(γ(M), γ′) > 3A.

(ii) The interval [M − T,M + T ] is contained in the interval [0,N0 + n0], where

N0, n0 are as previously defined.

(iii) For every integer k ∈ [M − T,M + T ], we have that d(γ(k), γ′) < d(γ(M), γ′).

The proof of this claim involves some unwieldy algebra of inequalities, which we take

as a black box [5, p. 152–154]. We now proceed assuming the existence of M .

Part 2:

We start by forming a construction of geodesic segments. First, we label four points

of interest on the geodesics γ, γ′. These are a1, a2, b1 and b2, defined as follows. Let

a2 ∈ Img(γ′) be such that d(γ(M −T ), a2) = d(γ(M −T, γ′). Similarly, let b2 ∈ Img(γ′)
be such that d(γ(M + T ), a2) = d(γ(M + T, γ′). Let α1, α2 be geodesic arcs joining

γ(M − T ) to a2 and γ(M + T ) to b2 respectively.

Figure 3: The construction as described.

To define a1 and b1, let

t1 = sup{t ∶ α1(t) ∈ Img(γ)}
t2 = sup{t ∶ α2(t) ∈ Img(γ)} .
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Then we define a1 = α1(t1) and b1 = α2(t2).

Observe that, by Claim 3.1.5(ii), whenever we have a distance of the form d(γ(s1), γ(s2))
for some s1, s2 ∈ [M −T,M +T ], this distance is finite and bounded above by K. This

gives a construction as in Figure 3.

Note that this figure isn’t a completely accurate representation of our setup, since the

image of the geodesics γ, γ′ lie in the Cayley graph C, however this is still a useful

graphic to keep in mind (and much easier to visualise than in the Cayley graph).

Next, we show that a1 is an element of the interval [γ(0), γ(M)]. Suppose not. Then,
as α1 is a geodesic path, the closer to a1 that we are along γ, the closer we are to a2.

Therefore,

S = d(γ(M), γ′) ≤ d(γ(M), a2) < d(γ(M − T ), a2) = d(γ(M − T ), γ′).

By Claim 3.1.5(iii), we have that

d(γ(M − T ), γ′) ≤ d(γ(M), γ′) = S.

Putting the above two lines together, we reach a contradiction. We therefore conclude

that a1 ∈ [γ(0), γ(M)], and similarly b1 ∈ [γ(M), γ(M + T )]. Additionally, we have

that:

S ≤ d(γ(M), a2)
≤ d(γ(M), a1) + d(a1, a2) (By triangle inequality)

= d(γ(M), a1) + d(γ(M − T ), a2) − d(γ(M − T ), a1) (As α1 is a geodesic)

≤ d(γ(M), a1) +M − T + d(γ(M), a1)

Rearranging this,

d(γ(M), a1) ≥
1

2
T, and likewise, d(γ(M), b1) ≥

1

2
T. (∗)

Part 3:

Consider traversing along the rectangle with vertices a1, a2, b2, b1. The edges [a1, a2],
[a2, b2], [b2, b1], [b1, a1] are paths in the Cayley graph C and lie on the geodesics

α1, γ
′, α2, γ respectively in C. Since we return to our starting vertex a1, we must have

applied a sequence of generators to a1, resulting in a word w equal to the identity in

⟨S ∣ R⟩. For the rest of the proof, we show that this w is the counter-example we are

looking for. In other words, w satisfies A(w) > A and A(w) ≥ 1
128
( 1
256ℓ(w)

2 − 3ℓ(w)).
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By Lemma 2.2.8, there exists a van Kampen diagram with boundary word w. Let D
be a minimal such diagram. As the edges are contained in geodesic segments, they

are geodesics themselves, and thus

ℓ(w) = ℓ([a1, a2]) + ℓ([a2, b2]) + ℓ([b2, b1]) + ℓ([b1, a1]) (1)

= S + ℓ([a2, b2]) + S + 2T. (2)

The second line follows from the fact that ℓ([a1, a2]), ℓ([b2, b1]) < S by Claim 3.1.5(iii),

and ℓ([b1, a1]) < d(γ(M − T ), γ(M + T )) = 2T .

By the triangle inequality,

ℓ([a2, b2]) ≤ ℓ([a2, a1]) + ℓ([a1, b1]) + ℓ([b1, b2])
≤ 2S + 2T. (3)

We quickly note that since ⌊A⌋ ≤ T , and A,T are non-negative integers, then A ≤ T .
From this, we may conclude that

A ≤ T = 1

2
T + 1

2
T (By Claim 3.1.5(i) and T = S

3
)

≤ ℓ([a1, b1]) (By (∗))
≤ ℓ(w) (By (1))

≤ 4S + 4T = 4S + 4 ⌊S
3
⌋ . (By (2) and (3))

Part 4:

We now inductively construct a family of subcomplexes of D. First, some notation: if

S is a subcomplex of D, we denote by StarD(S) the set of all closed cells of D which

intersect S.

Let N1 = StarD([a1, b1]) and Ni = StarD(Ni−1) for 2 ≤ i ≤ ⌊ T16⌋ − 1. We will later see

why it suffices to consider i in this range.

From this, we consider a family of curves defined by γi = Ni ∩D(1) ∩ (Do ∖Ni), where
D(1) is the 1-skeleton of D. To motivate this, we briefly visualise these curves, shown in

green in Figure 4. Note that D is a van Kampen diagram for a group with triangular

presentation, meaning all 2-cells in D are triangular. Loosely speaking, the curves

γi divide the boundary rectangle of D into ‘layers’, where each layer is a chain of

triangular 2-cells of height at most 1. The dissection of the area between α1 and α2

into layers will allow us to determine a lower bound for A(w).
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Figure 4: Family of subcomplexes of D.

Claim 3.1.6. The length ℓ(γi) ≥ T
4 for all 1 ≤ i ≤ ⌊ T16⌋ − 1. If γi is not connected, we

define ℓ(γi) to be the sum of the lengths of the connected components.

Proof of Claim 3.1.6. Let βi be the connected component of γi for which βi∩[a1, a2]
is a single point. Call this point xi. Similarly, let β′i be the connected component of

γi such that β′i ∩ [b1, b2] is a single point, call this point yi. (If γi is connected, we

have βi = β′i.)

Note that there are points x′i, y
′
i ∈ [a1, b1] such that d(xi, x′i) = i, d(yi, y′i) = i. This is

because d(x1, xi) = i, so there is at least one point which satisfies this condition. A

useful observation is that the points x′i and y′i are on opposite sides of γ(M). This is
because

d(a1, x′i) ≤ d(a1, xi) + d(xi, x′i) = i + i = 2i ≤ 2 ⌊
T

16
⌋ − 2 < 1

2
T, and

d(a1, γ(M)) ≥
1

2
T by (∗).

Hence, x′i ∈ [a1, γ(M)], and similarly y′i ∈ [γ(M), b1].

To prove the claim, it now remains to do some careful algebraic manipulation of

inequalities. We have

S ≤ d(γ(M), a2)
≤ d(γ(M), x′i) + d(x′i, xi) + d(xi, a2)
= d(γ(M), x′i) + d(x′i, xi) + d(a1, a2) − d(a1, xi)
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≤ d(γ(M), x′i) + d(x′i, xi) + S − (d(a1, x′i) − d(x′i, xi))

where the second and third lines result from the triangle inequality and reverse triangle

inequality respectively, and the final line uses the definition of S.

Therefore,

d(γ(M), x′i) ≥ d(a1, x′i) − 2i (4)

d(γ(M), x′i) + d(a1, x′i) ≥
1

2
T (5)

where (4) follows from above, and (5) is given by (∗) and the triangle inequality.

Adding (4) and (5) gives:

2d(γ(M), x′i) ≥
1

2
T − 2i

Ô⇒ d(γ(M), x′i) ≥
1

4
T − i

Ô⇒ d(γ(M), x′i) ≥
1

4
T − 1

16
T = 3

16
T.

Similarly, d(γ(M), y′i) ≥ 3
16T . Putting this all together,

ℓ(γi) ≥ d(xi, yi) ≥ d(x′i, y′i) − d(xi, x′i) − d(yi, y′i)
= d(x′i, γ(M)) + d(γ(M), y′i) − i − i

≥ 6

16
T − 2(⌊ T

16
⌋ − 1)

≥ 6

16
T − 2( T

16
) = 1

4
T

which proves the claim.

Part 5:

Finally we use this result to make conclusions about the area of the boundary word

w. First consider the layer Ni+1 ∖Ni and notice that each closed triangular 2-cell of

Ni+1 ∖ Ni has at most two edges on γi. As each cell has height at most 1, it follows

that

Area(Ni+1 ∖Ni) ≥
ℓ(γi)
2
≤ 1

8
T.

From here, we make two observations. Firstly,

A(w) ≥
⌊ T
16
⌋−2

∑
i=1

Area(Ni+1 ∖Ni) ≥ (⌊
T

16
⌋ − 2) ⋅ 1

8
T = 1

8
T ( T

16
− 3) .
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Secondly, by Part 3: ℓ(w) ≤ 4S + 4T ≤ 12 ⌊S3 ⌋ + 12 + 4T = 16T + 12.

Combining these results, we may deduce that

A(w) ≥ 1

128
(T 2 − 48T) ≥ 1

128
( 1

256
ℓ(w)2 − 99

32
ℓ(w)) > 1

128
( 1

256
ℓ(w)2 − 3ℓ(w))

as required.

It remains to check that A(w) > A, where A =max{200,B}. It is quick to check that

A(w) ≥ 1
128(T

2 − 48T ) > A if and only if T > 24 +
√
576 + 128A. Since T ≥ ⌊A⌋ > A − 1,

if A − 1 > 24 +
√
576 + 128A we have the desired result. Solving this inequality as

a quadratic in A, this holds for all A > 89 + 8
√
123 ≈ 178. By definition of A =

max{200,B} this condition is satisfied, and hence A(w) > A ≥ B.

We note that the above proof hinges on a very specific bound for the area of w, but this

suffices for all subquadratic Dehn functions by Dehn equivalence. Therefore, we have

shown that for any finitely presented group G, if G has a subquadratic Dehn function,

then G is hyperbolic.

3.2 Hyperbolic implies linear

To assemble the proof of the converse implication, we require some background knowledge

on metric graphs, which we combine with our background on area fillings of loops and

notes in the appendix concerning local geodesics. We define each of these and explore

some of their useful properties in the proceeding subsections, using [4, Chapter III.H].

Lemma 3.2.1. Let X be a metric graph whose edges all have integer lengths, and suppose

that X is δ-hyperbolic where δ > 0 is an integer. Given any non-trivial rectifiable loop

γ ∶ [a, b] →X which begins (and ends) at a vertex, one can find s, t ∈ [a, b] such that

(i) γ(s) and γ(t) are vertices of X,

(ii) d(γ(s), γ(t)) ≤ l(γ[s,t]) − 1, and

(iii) d(γ(s), γ(t)) + l(γ[s,t]) ≤ 16δ.

Proof. We claim that X contains no loops which are k-local geodesics for k = 8δ+ 1
2 .

Suppose, for a contradiction, that an (8δ + 1
2)-local loop γ0 ∶ [0,1] → X does exist.

(Since γ0 is a loop, we have that γ0(0) = γ0(1)). Since X is a δ-hyperbolic geodesic

metric space, by Theorem A.1.2, we have that Img(γ0) ⊂ B2δ(γ0(0)). It suffices to

show that there exists some time t on which γ0 is defined such that d(γ0(0), γ0(t)) > 2δ,
in other words, there is some time at which the loop exits the ball. Consider t = 8δ.
Since γ0 is (8δ + 1

2)-local, d(γ0(0), γ0(t)) = 8δ > 2δ as required.
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Thus, by the above claim, there exists a non-geodesic subarc γ ↾[s0,t0] of γ with path

length less than 8δ + 1
2 . Next, choose a geodesic connecting γ(s0) and γ(t0). (This

exists since X is a geodesic metric space). Call this geodesic σ ∶ [0,1] →X. Note that

these two points do not necessarily have to vertices, but could be points partway along

an edge. We define γ(s) and γ(t) to be the first and last vertices of X respectively

through which this geodesic passes. This shows (i) constructively.

For (ii), note that for any two rectifiable paths in X with common endpoints, the

difference in the lengths of these paths is an integer. Applying this to the paths

γ ↾[s0,t0] and σ, this gives us that l(γ[s,t])−d(γ(s), γ(t)) ≥ 1, which rearranges to give

(ii).

Finally, (iii) follows as a result of (ii) as follows:

d(γ(s), γ(t)) + l(γ[s,t]) ≤ 2 ⋅ l(γ[s,t]) − 1

< 2(8δ + 1

2
) − 1 = 16δ.

The above result is a useful ingredient in the proof of our main theorem of this section,

which we discuss next. This method of filling edge-loops is taken from [4, p. 417–418], the

earliest application of which was due to Max Dehn [11] in a foundational work published

in 1912.

Theorem 3.2.2. Let X be a geodesic space. If X is δ-hyperbolic, then it satisfies a linear

isoperimetric inequality.

Proof. We start by combining several of the previous results in order to simplify

our end goal. By Proposition A.2.1, a δ-hyperbolic metric space X is quasi-isometric

to a metric graph X ′ with unit edge lengths. As quasi-isometric embeddings preserve

hyperbolicity (Theorem A.1.3), this implies that the graph X ′ is δ-hyperbolic for some

δ > 0. If we can show that X ′ satisfies a linear isoperimetric inequality, then it will

follow from Proposition A.2.2 that X satisfies a linear isoperimetric inequality. Hence,

it suffices to show that the metric graph X ′ satisfies a linear isoperimetric inequality.

In order to avoid writing X ′ repetitively instead of X, we can assume that X is a

metric graph with unit edge lengths. Assume that X is δ-hyperbolic where δ is an

integer (i.e. δ ≥ 1). To outline the proof, we aim to show by induction on l(γ) + l0(γ)
that every edge-loop in X admits a standard 16δ-filling of area (8δ + 2)(l(γ) + l0(γ)).
From this, it will then follow that X satisfies a linear isoperimetric inequality.

We start by considering the first case of the induction. Consider the trivial case in
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which γ is defined as an edge-loop given by a constant map at a single vertex. Here,

l(γ) = 0 and l0(γ) = 1. Since there are no faces of P , trivially there exists an ε-

filling of γ for any value of ε ≥ 0. In addition, area of the filling corresponds to the

number of faces of P , which is 0. In this case γ admits a standard 16δ-filling of area

0 < (8δ + 2)(l(γ) + l0(γ)) = 8δ + 2.

For the inductive step, suppose our proposition holds for n up to and including n =
l(γ) + l0(γ) − 1. The goal of our inductive argument is therefore to show it holds for

n = l(γ) + l0(γ). Given an edge-loop γ ∶ S1 → X with l(γ) ≥ 2, we consider how to

reduce l(γ) + l0(γ). If l0(γ) = 0, then:

Case 1. The path γ is locally injective, or;

Case 2. The path γ contains a subpath which backtracks. In other words, there

is a subpath which traverses a sequence of edges and then immediately returns

along those edges.

(To see this, note that if neither case 1 nor case 2 hold, then there exists some interval

[t1, t2] such that γ([t1, t2]) is a constant map at a vertex.)

We construct a filling for γ in each of the above two cases. For case 1, choose s

and t as in Lemma 3.2.1 and map the interval segment [s, t] to a constant speed

parameterisation of a geodesic segment joining c(s) to c(t) in X. For case 2, connect

the endpoints of the backtracking subpath (we can think of this as the times at which

we start and stop traversing this backtracking subpath) by a Euclidean segment in

the disk. We can “remove” this backtracking segment by sending this segment to X

by a constant map.

Now we consider the case where l0(γ) ≥ 1. For each maximal subpath of γ which a

constant map at a vertex, we can consider a subpath γ ↾[s,t] which is the concatenation

of this constant map with the proceeding subpath of length one. We again connect s

to t by a Euclidean segment in the disk and map this segment to X as a constant speed

parametrisation of a geodesic segment [γ(s), γ(t)], thereby “removing” the subpath

of γ which is a constant map.

In each of these three situations, we have started to fill the edge-loop γ by dividing the

disk into two sectors. The “small” sector has a boundary which maps to an edge-loop

(containing γ([s, t])) of length at most 16δ by Lemma 3.2.1. The other “big” sector

has boundary map which is an edge-loop γ′ with l0(γ′) + l(γ′) < l0(γ) + l(γ). By our

assumption, we may fill this big sector with a standard 16δ-filling (P,Φ) of γ′ with
Area16δ(γ′) ≤ (8δ + 2)(l0(γ′) + l(γ′) − 1). We may assume that s and t are vertices of

P , since if not, we may subdivide to create two additional faces such that this is the

case, as shown in Figure 5.
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Now we consider how to fill the small sector. In order to do this, we use that the

restriction of Φ to the Euclidean segment [s, t] is a concatenation of at most 8δ

edges. This follows as a consequence of Theorem A.1.2. By this observation, it then

follows that the interior of the segment [s, t] contains fewer than 8δ vertices from the

triangulation of the filling. To complete the standard filling of γ, we introduce edges

connecting this set of vertices to a vertex introduced on S1 between s and t.

Figure 5: On the left, an example triangulation P showing the creation of two faces
(+1 to the total number of faces) when the red vertex corresponding to s or t is
added. On the right, a visualisation of how the small sector is filled. (The other
vertices interior to the disk are removed for clarity.)

These 8δ faces, plus two faces from subdividing so that s, t are vertices of P gives us at

most an additional 8δ + 2 faces. Hence for n = l(γ) + l0(γ), we have shown inductively

that every edge-loop in X admits a standard 16δ-filling of area (8δ + 2)(l(γ) + l0(γ)).

It remains to justify that X satisfies a linear isoperimetric inequality. Since our

construction bounds Area16δ(γ) by a linear function of l(γ), we have by Definitions 2.3.4

and 2.3.5 that X satisfies a linear isoperimetric inequality.

To conclude this section, we recall Theorem A and B from the end of Section 2.1, and

relate these to Theorem 3.1.4 (subquadratic Dehn function implies hyperbolic group) and

Theorem 3.2.2 as above. Together, this gives us our desired result that a group with

subquadratic Dehn function in fact admits a linear Dehn function. Therefore, we have

shown that the Gromov gap corresponding to the interval (1,2) exists.

In the next section, we introduce topological constructions in order to prove that this gap

is the only gap in the isoperimetric spectrum.
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4 Snowflake Groups

In this section, we show that there is only one gap in the isoperimetric spectrum. Since

we refer to this result frequently, we refer to it by Theorem D as given below.

Theorem D. [6, p. 2] The closure of P is 1 ∪ [2,∞).

In order to demonstrate this, we prove a stronger result which will in turn imply TheoremD.

Theorem 4.0.1. [6, p. 2] For all pairs of positive integers p > q, there exists a finitely

presented group G whose Dehn function δG(n) ≃ n2α where α = log2 (2pq ).

We prove Theorem 4.0.1 by introducing a construction for a specific family of groups,

termed snowflake groups, and determining a lower and upper bound for the Dehn function

of a particular presentation of these groups. This approach aligns with the existing

literature, where these groups have been previously studied by Brady [3, Chapter I.1]

and others ([6], [12]). In this section, we follow the exposition in Brady’s text in [3,

p. 10–25].

Before defining snowflake groups formally, we introduce two key topological constructions:

graphs of spaces and graphs of groups, along with the torus construction. Since snowflake

groups are defined as graphs of groups, we start by establishing these definitions.

4.1 Graphs of groups

The simplest way to define snowflake groups is using a construction known as an HNN

extension (named after Higman, Neumann and Neumann, 1949). This is a way to extend

a group G by adjoining a new element under certain conditions, described formally as

follows.

Definition 4.1.1 (HNN extension). Let G be a group with presentation ⟨S ∣ R⟩, and
consider A,B subgroups of G. Let ρ ∶ A→ B an isomorphism between two subgroups, and

let t ∉ G be a new element such that ⟨t⟩ is the cyclic group of infinite order. Then, the

HNN extension of G relative to A,B and ρ is:

G∗ρ = ⟨S, t ∣ R, t−1at = ρ(a) for all a ∈ A⟩.

The new generator t is often referred to as a stable letter.

Using HNN extensions allows us to invoke a useful result known as Britton’s lemma.

Definition 4.1.2. Let G∗ρ be a HNN extension using the same notation as above. For

n ∈ N, let {gi}ni=1 be a sequence of words, each expressed in the generating set S ⊂ G, and

let the powers {ai}ni=1 denote either ±1. A sequence g0, t
a1 , g1, t

a2 , g2, . . . , t
an , gn is called

reduced if there is no consecutive subsequence of the form:

1. t−1, gi, t with gi ∈ A, or;
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2. t, gj , t
−1 with gj ∈ B.

Lemma 4.1.3 (Britton’s Lemma). Let n ≥ 1. If the sequence g0, t
a1 , g1, t

a2 , g2, . . . , t
an , gn

is reduced, then g0t
a1g1t

a2g2⋯tangn ≠ 1 in G∗ρ.

We refer the interested reader to [10, p. 181] for a proof.

Definition 4.1.4 (Snowflake groups). The snowflake groups are groups given by group

presentations of the form

Gp,q = ⟨a, b, s, t ∣ [a, b] = 1, saqs−1 = apb, taqt−1 = apb−1⟩ .

We can think of this as the multiple HNN extension of G = ⟨a, b ∣ [a, b] = 1⟩ ≅ Z2 relative

to the isomorphisms ρ1 ∶ ⟨aq⟩ → ⟨apb⟩ and ρ2 ∶ ⟨aq⟩ → ⟨apb−1⟩. (These are isomorphic since

each of these cyclic groups are proper non-trivial subgroups of Z2.)

We recall the definition of a (directed) graph from MA241 Combinatorics and similar

modules. The following definitions are taken from [3, p. 10].

Definition 4.1.5 (Initial, terminal vertex). Let Γ = (V(Γ),E(Γ)) be a directed graph. By

definition, each e ∈ E(Γ) is an ordered pair of vertices (v1, v2) for v1, v2 ∈ V(Γ). Let the

maps ι and τ send each edge to one of the two incident vertices as follows:

ι ∶ E(Γ) → V(Γ) τ ∶ E(Γ) → V(Γ)
e = (v1, v2) ↦ v1 e = (v1, v2) ↦ v2

For each edge e ∈ E(Γ), we call ι(e) the initial vertex and τ(e) the terminal vertex.

Definition 4.1.6 (Graph of spaces). [2, p. 10] A graph of spaces is a finite directed graph

Γ together with the following data:

1. A vertex space Xv associated to each vertex v ∈ V(Γ),

2. An edge space Xe associated to each edge e ∈ E(Γ), and

3. A collection of continuous maps fι,e ∶Xe →Xι(e) and fτ,e ∶Xe →Xτ(e) for each edge

e ∈ E(Γ).

Definition 4.1.7 (Total space). The total space of a graph of spaces is defined as the

quotient space of

⎛
⎝ ⋃v∈V (Γ)

Xv
⎞
⎠
∪
⎛
⎝ ⋃e∈E(Γ)

Xe × [0,1]
⎞
⎠

by the identifications (x,0) ∼ fι(e)(x) for all x ∈Xe and (x,1) ∼ fτ(e)(x) for all x ∈Xe.

Definition 4.1.8 (Fundamental group of graph of spaces). The fundamental group of a

graph of spaces is the fundamental group of the total space.
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Given a group G, one can consider the presentation 2-complex (recall Definition 2.2.2)

corresponding to a given presentation of G.

Definition 4.1.9 (Aspherical). For a group G with presentation ⟨S ∣ R⟩, a presentation

2-complex K⟨S∣R⟩ is said to be aspherical if its universal covering space is contractible.

We now define what it means to be a graph of groups, which is a specific case of the more

general graph of spaces.

Definition 4.1.10 (Graph of groups). A graph of groups is a finite directed graph Γ

together with the following data:

1. A vertex group Gv associated to each vertex v ∈ V(Γ),

2. An edge group Ge associated to each edge e ∈ E(Γ), and

3. A collection of injective homomorphisms φι,e ∶ Ge → Gι(e) and φτ,e ∶ Ge → Gτ(e) for

each edge e ∈ E(Γ).

Proposition 4.1.11. The snowflake groups are graphs of groups, and the total space for

the corresponding graph of spaces is aspherical.

Proof. For each snowflake group Gp,q, this is in fact a graph of groups where the

underlying graph is a bouquet of two circles. The vertex group is Z2, generated by a

and b, and the edge groups are both Z.

Pictorially, we can visualise the total space as obtained by attaching two cylinders to

the torus. To do this, one end of each of the two cylinders is attached to the torus

along the curve aq (i.e. q times around the loop a). The other end of the first cylinder

is identified with apb and the other end of the second cylinder is identified with apb−1.

This construction is shown in Figure 6 below.

Figure 6: The 2-complex for Gp,q. This figure is taken directly from [6, p. 1057].
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The universal cover of this total space is a collection of planes (covers of the torus)

indexed by the cosets of ⟨a, b ∣ [a, b]⟩ inGp,q, glued along strips (covers of the cylinders).

This is a contractible 2-complex, which means that the total space is aspherical.

4.2 Lower bound

After establishing some background on snowflake groups, we move towards determining

a lower bound for the Dehn function δGp,q . In the next subsection, we will show that we

can find an upper bound of the same order of ℓ(w), thereby giving us the Dehn function

δGp,q . Before we begin we assume the following result.

Proposition 4.2.1. If a van Kampen diagram ∆ embeds into the universal cover K̃ for

some aspherical 2-complex K, then any van Kampen diagram ∆′ with the same boundary

label as B∆ has at least as many 2-cells as ∆. In other words, A(∆) ≤ A(∆′).

Proof. An explanation is given in [6, p. 1057].

Theorem 4.2.2 (Lower bound for Dehn function). The Dehn function δGp,q for the

snowflake groups satisfies the inequality n2α ⪯ δGp,q(n), where α = log2(2pq ).

Proof. In the proof of Proposition 4.1.11, we described the universal cover of the

total space of the graph of spaces by a collection of copies of R2 (universal covers of

the torus) connected together in a tree-like manner by strips (universal covers of the

cylinders).

Figure 7: The iterated snowflake diagram, modified from Brady and Bridson’s paper
[6, p. 1058].
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To prove this, we follow the proof in Brady and Bridson’s paper [6, p. 1058–9] to

inductively construct an embedded disk in the universal cover. From this, we establish

a sequence of null-homotopic words Wk in the generators {a, s, t} of length lk which

have area of order l2αk , where α = log2(2pq ) as in the theorem statement. We refer

to these as snowflake words. We keep in mind the snowflake diagram as pictured in

Figure 7. We will express the snowflake words Wk in terms of words wk which concern

the upper half of the boundary of this picture. (Geometrically, the lower half of the

diagram will look like a reflected image of the upper half, and only the labels will be

different. Therefore, we can restrict our attention to the upper half of the diagram.)

To start, let w0 ∶= aq and w1 ∶= saqa−1taqt−1. Notice that

w1 ≡ (saqa−1)(taqt−1) ≡ apbapb−1 =
Gp,q

a2p.

Next, we define

w2 ∶= sw1a
ε1s−1tw1a

ε1t−1

≡ sa2p+ε1s−1ta2p+ε1t−1

where ε1 is the smallest positive integer so that q divides 2p + ε1. Continuing in this

way, we define

wi ∶= swi−1a
εi−1s−1twi−1a

εi−1t−1

where εi−1 is chosen so that 0 ≤ εi−1 ≤ q − 1 and wi−1a
εi−1 =

Gp,q

am for some exponent

such that m is divisible by q.

After k iterations, we reach a word wk which satisfies 4(2k) ≤ ℓ(wk) ≤ (4q)2k such

that wk =
Gp,q

amk , where

mk = (
2p

q
)
k

q + ε1 (
2p

q
)
k−1

+ ⋅ ⋅ ⋅ + εk−1 (
2p

q
) .

For us, it suffices that mk ≥ (2pq )
k
q. We note this observation and return to it shortly.

In addition, we observe that the van Kampen diagram representing the equality wk =
amk is embedded in the universal cover for the total space given by the graph of groups

corresponding to the snowflake groups Gp,q.

We claim that the snowflake words are the given by the commutators

Wk = [swk−1a
εk−1s−1, twk−1a

εk−1t
−1].
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Figure 8: Close-up diagram displaying the relation wk = amk , also modified from
Brady and Bridson’s paper [6, p. 1059].

We have that

Wk = [swk−1a
εk−1s−1, twk−1a

εk−1t
−1]

≡ swk−1a
εk−1s−1twk−1a

εk−1t
−1(swk−1a

εk−1s−1)−1(twk−1a
εk−1t

−1)−1

≡ wkw
−1
k =

Gp,q

1

and that the length ℓ(Wk) = 2ℓ(wk). By Figure 8, this word is the boundary of

an embedded van Kampen diagram (which we refer to as the snowflake diagram) in

the universal cover. The central square in this snowflake diagram is a van Kampen

diagram over the subpresentation ⟨a, b ∣ [a, b]⟩ with diagonal labelled amk . Therefore,

by Proposition 4.2.1, there exists some constant C > 0 such that the area of this square

subdiagram is at least Cm2
k. Hence, it follows that

A(Wk) ≥ Cm2
k ≥ Cq2 (2p

q
)
2k

.

Additionally, by our constraints on ℓ(wk) determined previously,

8(2k) ≤ ℓ(Wk) = 2ℓ(wk) ≤ (4q)2k+1.

Putting this all together,

ℓ(Wk)2 log2(
2p
q
) = (2 ⋅ (4q)2k)2 log2(

2p
q
)

= (8q)2 log2(
2p
q
) ⋅ (2k)2 log2(

2p
q
)

≤ (8q)2 log2(
2p
q
) ⋅ (2p

q
)
2k

≤ A(Wk).
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4.3 Upper bound

In this subsection, we continue to closely follow the work by Brady and Bridson in [6] to

establish an upper bound for the Dehn function δGp,q . For brevity, we will rely on several

key results presented in [6] without explicit proof. However, we demonstrate how these

results combine to culminate in the final proof. This will hopefully provide a high-level

overview of the underlying approach.

Definition 4.3.1 (Torus subgroup). We refer to the subgroup ⟨a, b ∣ [a, b] = 1⟩ ⊂ Gp,q as

the torus subgroup of the snowflake group.

To determine an upper bound for the Dehn function, we introduce a useful idea known

as distortion. Loosely speaking, this is a measure of the reduction in length of a word w

when extra generators are introduced.

Definition 4.3.2 (Distortion). For a pair of groups H ⊂ G with finite generating sets, let

the word metrics be dH and dG of H and G respectively. The distortion of H in G is the

function d ∶ N→ N defined by

d(n) =max{dH(1, h) ∣ h ∈H, dG(1, h) ≤ n}.

A useful tool for the proof is the Hölder inequality for sums, stated without proof as

follows.

Proposition 4.3.3 (Hölder inequality). For constants α ≥ 1 and xi > 0, we have that:

(
n

∑
i=1

xi)
α

≥ (
n

∑
i=1

xαi ) .

Definition 4.3.4 (Inverse pair). Suppose that w = x1x2 . . . xl represents a word in the

subgroup ⟨a, b ∣ [a, b] = 1⟩ ⊂ Gp,q and the xi are one of the six generators a±1, s±1, t±1. An

inverse pair is an ordered pair (xi, xj) with i < j such that the following properties hold:

1. Either i = 1 or w = x1x2 . . . xl ∈ ⟨a, b ∣ [a, b] = 1⟩.

2. The element x1 . . . xk ∉ ⟨a, b ∣ [a, b] = 1⟩ for all i ≤ k ≤ j − 1.

3. The element x1 . . . xj ∈ ⟨a, b ∣ [a, b] = 1⟩.

By retracting Gp,q onto the free group F ({s, t}), if (xi, xj) is an inverse pair, then xi =
x−1j ∈ {s±1, t±1}, and the subword determined by an inverse pair represents an element by

one of the groups ⟨aq⟩, ⟨aqb⟩, or ⟨aqb−1⟩. Since the inverse pairs of w are non-overlapping

nested pairs, we have that any word w which represents a word in the subgroup ⟨a, b ∣
[a, b] = 1⟩ ⊂ Gp,q has a unique decomposition as a product of subwords of five types:

Type 1. These are the subwords of the form s . . . s−1 which are determined by the inverse
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pairs (s, s−1). They are equal to powers of apb in Gp,q.

Type 2. These are the subwords of the form t . . . t−1 which are determined by the inverse

pairs (t, t−1). They are equal to powers of apb−1 in Gp,q.

Type 3. These are the subwords of the form s−1 . . . s which are determined by the inverse

pairs (s−1, s). They are equal to powers of a in Gp,q.

Type 4. These are the subwords of the form t−1 . . . t which are determined by the inverse

pairs (t−1, t). They are equal to powers of a in Gp,q.

Type 5. These are the remaining subwords of w. They are of the form am for some

m ∈ Z.

A key result in this proof is is the following proposition.

Proposition 4.3.5. [6, p. 1060] Let w be a word of length l in the generators a±1, s±1, t±1,

and let α = log2(2pq ). We then have the following:

1. If w represents am in Gp,q, then ℓ(m) ≤ lα.

2. If w represents either (apb)m or (apb−1)m, then qℓ(m) ≤ lα.

Corollary 4.3.6. The distortion function of the torus subgroup ⟨a, b ∣ [a, b] = 1⟩ ⊂ Gp,q is

equivalent to nα, where α = log2(2pq ).

Proof. By the proof of Theorem 4.2.2, we have that wk = amk , where mk ≥ q (2pq ).
Using that ℓ(wk) ≤ (4q)2k and rearranging gives us that mk ≥ ( q

(4q)α ) ℓ(wk)α, and so

the distortion function d ⪰ nα.

For the lower bound on distortion, notice that for each g in the torus subgroup ⟨a, b ∣
[a, b] = 1⟩, there are unique integers r and s such that g = ar(apb)s in ⟨a, b ∣ [a, b] = 1⟩.
If A is the generating set {a, apb}, then in the associated word metric dA we have

that dA(1, g) = ∣r∣ + ∣s∣. Comparing this to the word metric dG corresponding to the

generators {a, s, t} for Gp,q, we have that

dG(1, g)α ≥ dG(1, ar)α + dG(1, (apb)s)α (by triangle and Hölder inequalities)

≥ ∣r∣ + q∣s∣ (by Proposition 4.3.5)

≥ dA(1, g)

By this, the distortion d of the torus subgroup in Gp,q satisfies d(n) ⪯ nα. Together,

the lower and upper bound give equivalence of the distortion to nα, for α = log2(2pq ).

To prove our main result of the upper bound, we assume the following lemma without

proof. For details, see [6, p. 1065].
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Lemma 4.3.7 (Shuffling Lemma). Let A be the free abelian group on the generating

set {a, b1, . . . , bk}. If W1, . . . ,Wr ∈ A are words of minimal length such that W1⋯Wn =
A

an for some n ∈ Z, then the product W1⋯Wn can be transformed to an in at most

2k∑i<j ℓ(Wi)ℓ(Wj) steps as follows. Here, a step is an application of the commutator

relations [bi, bj] and [a, bi], for 1 ≤ i, j ≤ k.

Proposition 4.3.8. Let p ≥ q be integers and consider the presentation of Gp,q which we

recall from Definition 4.1.4:

Gp,q = ⟨a, b, s, t ∣ [a, b] = 1, saqs−1 = apb, taqt−1 = apb−1⟩ .

There exists a constant C ≥ 1 such that for all m ∈ Z, all words w in the generators

a±1, s±1, t±1and all words v of the form am or (apb±1)m, the following condition holds:

If w = v in Gp,q, then A(wv−1) ≤ Cℓ(w)2α, where α = log2 (2pq ).

Proof. We prove this by induction on the length of the word w. Call this length

l = ℓ(w). Here we will show that we can take C = 2(p+1)4

q .

We consider the initial stage of the induction where l ≤ q + 1. Suppose first that

v is a word of the form am, and w = v in Gp,q. Then wa−m is a word equal to

the identity in Gp,q, and hence by Britton’s lemma, the word given by wa−m is not

reduced. Thus there is a consecutive subsequence given by a pair s, s−1 or t, t−1 with

a word in aq or apb±1 between them. By inspection, this word must occur in w.

In the first instance, we may write w = w1svs
−1w2 in Gp,q, with v = anq for some

n ∈ Z. It follows that we must have n = 0, and therefore a free cancellation so that

w =
Gp,q

w1ss
−1w2 =

Gp,q

w1w2. Otherwise, l ≥ l(v)+2 > q+1, which contradicts our starting

assumption. The argument is similar in the other cases. Since w freely reduces to v,

we have that the area A(wv−1) = 0 ≤ Cℓ(w)2α.

For the inductive step, we consider two cases:

Case 1. The word w is one of the five types listed in Definition 4.3.4.

Case 2. The word w is a product of subwords w1w2 . . .wn of types 1 to 5, where

n ≥ 2.

For Case 1, we show the inductive step holds when w is a word of type 1. The proof

for the other types is similar.

Suppose w is a word of length l > q + 1, and assume that our inductive hypothesis

holds for up to and including k = l − 1, for some k ∈ N>q+2. If w is type 1, then w is

of the form sw′s−1 for w′ ∈ F ({a, s, t}). Next, call v ≡ (apb)m for some m. We then

have that w = v in the group Gp,q. It follows that if we write v
′ ≡ amq, we have w′ = v′
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in Gp,q. Then, as ℓ(w′) = l − 2, we have reduced the length of our word by 2, so by

our inductive assumption we have that A(w′v′−1) ≤ Cℓ(w′)2α. In addition, note that

sv′s−1v−1 is a product of m conjugates of the relation saqs−1(apb)−1. Therefore,

A(wv−1) = A(sw′s−1v−1)
≤ A(sw′v′−1s−1) +A(sv′s−1v−1) (by Lemma 2.1.10)
≤ Cℓ(w′)2α +m.

By Proposition 4.3.5, m ≤ ℓ(w)α, and as ℓ(w′) = ℓ(w) − 2 this gives

A(wv−1) ≤ C(ℓ(w) − 2)2α + ℓ(w)α,

which by algebraic manipulation is less than ℓ(w)2α. This proves the induction for

Case 1.

Next, consider Case 2 where w is a product of subwords w1w2 . . .wn of types 1 to 5, for

n ≥ 2. By our characterisation of inverse pairs in these five types, we may assume that

each subword wi is equal to a unique word of the form ami or (apb±1)mi . For each wi

denote this corresponding word by vi. Now let l = ℓ(wi). As before, v ≡ v1 . . . vn is equal

to w in Gp,q. By the previous case, we have that for each 1 ≤ i ≤ n, A(wi(vi)−1) ≤ Cl2αi .

Observe that the word wv−1 can be expressed as a product of null-homotopic words

∏n
i=1wiv

−1
i and (∏n

j=1 vj) v−1. By applying Lemma 2.1.10, we have

A(wv−1) = A
⎛
⎝
(

n

∏
i=1

wiv
−1
i )
⎛
⎝

n

∏
j=1

vj
⎞
⎠
v−1
⎞
⎠

≤ A(
n

∏
i=1

wiv
−1
i ) +A

⎛
⎝
⎛
⎝

n

∏
j=1

vj
⎞
⎠
v−1
⎞
⎠

≤ C
n

∑
i=1

l2αi +A
⎛
⎝
⎛
⎝

n

∏
j=1

vj
⎞
⎠
v−1
⎞
⎠
.

To conclude the proof, we make the following claim and show it leads directly to our

desired result.

Claim 4.3.9. If C = 2(p+1)4

q2
, then

A
⎛
⎝
⎛
⎝

n

∏
j=1

vj
⎞
⎠
v−1
⎞
⎠
≤ C

n

∑
i=1

lαi
⎛
⎝∑j≠i

lαj
⎞
⎠
.

A proof of this inequality involves Proposition 4.3.5 and the Shuffling Lemma (see

Lemma 4.3.7). For details, we refer the interested reader to [6, p. 1067]. Assuming
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the claim holds, we get

A(wv−1) ≤ Cil
2α
i +C

n

∑
i=1

lαi ∑
j≠i

lαj = C (
n

∑
i=1

lαi )
2

≤ Cl2α,

where the final inequality arises from the Hölder inequality (Proposition 4.3.3).

It follows that taking v as the empty word in Proposition 4.3.8 above yields the upper

bound.

Theorem 4.3.10 (Upper bound for Dehn function). Suppose w written in the generators

a±1, s±1, t±1 is null-homotopic in Gp,q. Then, A(w) ≤ Cℓ(w)2α, where ℓ(w) is the length of

w with respect to the generators and α = log2 (2pq ). It then follows that the Dehn function

satisfies the upper bound δGp,q ⪯ n2α.

Combining Theorems 4.2.2 and 4.3.10 combine to give Theorem 4.0.1. Therefore, the

snowflake groups give rise to a dense set of exponents for Dehn functions in P≥2, and

finally this shows uniqueness of the Gromov gap.
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5 Further Research

We briefly review some of the research that led to Brady-Bridson’s paper [6], and some

recent discoveries about the isoperimetric spectrum which have followed since. Some

insights of previous works include Baumslag-Miller-Short (1993) and Bridson-Pittet (1994)

who showed that all integral values were elements of P. From there on, the surrounding

literature aimed to find collections of elements in the [2,∞) portion of P with smaller and

smaller gaps between the elements, until Brady and Bridson showed that the snowflake

groups gave rise to a dense collection of numbers in [2,∞).

Since the early 2000s, there have been many more interesting results proved about the

isoperimetric spectrum. We give a couple of examples.

One important question is: for any α ∈ [1,∞), can we determine whether or not α ∈ P,
i.e. is nα is a Dehn function? While this question is currently open, we state a result

which has made progress towards proving it.

Theorem 5.0.1 (Sapir, Birget, Rips (2002)). If a real number α > 4 is computable4 in

time less than 22
Cm

for some constant C > 0, then nα is equivalent to the Dehn function

of a finitely presented group.

Examples of computable values of α > 4 include π + 1, e2 and all rational numbers p
q > 4.

Another angle on recent research into the isoperimetric spectrum concerns a k-dimensional

isoperimetric spectrum, denoted P(k), which is defined by using a corresponding k-dimensional

Dehn function. This extends our theory on areas to k-dimensional volumes. Interestingly,

there is no analogy to the Gromov gap in higher dimensions:

Theorem 5.0.2 (Brady, Forester (2008)). The k-dimensional isoperimetric spectrum P(k)

is dense in [1,∞) for k > 2.

For further details on recent research, we refer the interested reader to [13, p. 3–4].

Figure 9: Diagram of recent results on the isoperimetric spectrum [3, p. 6].

4Being computable in time T (n) means that there exists a Turing machine which, given n, computes a
binary rational approximation of α with error at most 1

2n+l
in time at most T (n).
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A Appendix

In this section, we present some useful results that complement our main discussion. Since

these topics deviate slightly from our main topic of interest, we omit the proofs and instead

refer to the relevant sections in Bridson and Haefliger [4] for details.

A.1 Local geodesics

First, we introduce what it means for a path to be a k-local geodesic and state some useful

properties.

Definition A.1.1. [4, p. 405] Let X be a metric space and fix k > 0. A path γ ∶ [a, b] →X

is a k-local geodesic if d(γ(t1), γ(t2)) = ∣t2−t1∣ for all pairs t1, t2 ∈ [a, b] such that ∣t2−t1∣ ≤ k.

In other words, a path γ is a k-local geodesic if every subpath of γ of length at most k is

geodesic.

Theorem A.1.2. [4, p. 405–6] Let X be a δ-hyperbolic geodesic space and let γ ∶ [a, b] →X

be a k-local geodesic, where k > 8δ. Then Img(γ) is contained in the 2δ-neighbourhood of

any geodesic segment [γ(a), γ(b)] connecting the endpoints of γ.

We assume the definition of a quasi-isometric embedding from MA4H4 Geometric Group

Theory, and recall that hyperbolicity is quasi-invariant. We refer the reader to the lecture

notes of MA4H4 Geometric Group Theory for a proof.

Theorem A.1.3. [4, p. 402] Let X and X ′ be geodesic metric spaces and let f ∶X ′ →X

be a quasi-isometric embedding. If X is hyperbolic, then X ′ is hyperbolic.

A.2 Metric graphs

We next include a result that allows us to replace length spaces, possibly very complicated

ones, by quasi-isometric metric graphs. This can be helpful when working with quasi-

isometry invariants (such as Gromov hyperbolicity) because it allows one to use induction

on the length of paths. This method used in the main proof of Section 3.2.

Proposition A.2.1. [4, p. 152] There exist universal constants α and β such that there

is an (α,β)-quasi-isometry from any length space to a metric graph, all of whose edges

have length one.

Proposition A.2.2. [4, p. 415] Let X ′ and X be quasi-isometric length spaces. If there

exists f ∶ [0,∞) → [0,∞) and ε > 0 such that every loop in X has an ε-filling, and

Areaε(γ) ≤ f(l(γ)) for every rectifiable loop γ in X, then there exists f ′ ∶ [0,∞) → [0,∞)
such that f ′ is a coarse isoperimetric bound for X ′ such that f ′ ⪯ f .
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